我正在尝试 libsvm,并按照该示例在软件随附的 heart_scale 数据上训练 svm。我想使用我自己预先计算的 chi2 内核。训练数据的分类率下降到 24%。我确定我正确计算了内核,但我想我一定是做错了什么。代码如下。你能看出有什么错误吗?帮助将不胜感激。
%read in the data:
[heart_scale_label, heart_scale_inst] = libsvmread('heart_scale');
train_data = heart_scale_inst(1:150,:);
train_label = heart_scale_label(1:150,:);
%read somewhere that the kernel should not be sparse
ttrain = full(train_data)';
ttest = full(test_data)';
precKernel = chi2_custom(ttrain', ttrain');
model_precomputed = svmtrain2(train_label, [(1:150)', precKernel], '-t 4');
这是内核的预计算方式:
function res=chi2_custom(x,y)
a=size(x);
b=size(y);
res = zeros(a(1,1), b(1,1));
for i=1:a(1,1)
for j=1:b(1,1)
resHelper = chi2_ireneHelper(x(i,:), y(j,:));
res(i,j) = resHelper;
end
end
function resHelper = chi2_ireneHelper(x,y)
a=(x-y).^2;
b=(x+y);
resHelper = sum(a./(b + eps));
使用不同的 svm 实现(vlfeat),我获得了大约 90% 的训练数据分类率(是的,我在训练数据上进行了测试,只是为了看看发生了什么)。所以我很确定 libsvm 结果是错误的。