我正在学习如何使用 TensorFlow,并获得了一个基于 Keras 结构的工作模型。它运行但结果对我来说有点神秘。我试图复制它并将其简化为最基本的本质,然后重新构建它。我根本无法理解的部分是它如何/在哪里将训练数据输入拆分为训练和验证集?我检查了模型代码、初始参数等。TensorFlow 卷积神经网络中是否有内置函数可以自动执行此操作?
对 Talos 的调用如下所示,前两个值是 x-training 和 y-training 值,没有x_val
或y_val
传递给 Talos 函数。Talos 是否可以自动生成x_val
和y_val
?
jam1 = talos.Scan(features3,
label2[0,],
model = DLAt,
params = ParamsJam1,
experiment_name = "toy1",
fraction_limit=.2)
def DLAt(x_train, y_train, x_val, y_val, params):
model = Sequential()
convLayer = Conv1D(filters=params['numFilters'],
kernel_size=params['kernalLen'], strides=1, activation='relu',
input_shape=(300,4), use_bias=True)
model.add(convLayer)
model.add(MaxPooling1D(pool_size=params['maxpool']))
model.add(Flatten())
firstHidden = Dense(params['neuronsInLayerOne'], activation='relu',
kernel_regularizer=regularizers.l1_l2(l1=params['l1'], l2=0))
model.add(firstHidden)
model.add(Dropout(params['dropoutLevel']))
model.add(Dense(params['neuronsInLayerTwo'], activation='relu'))
model.add(Dropout(params['dropoutLevel']))
model.add(Dense(1, activation='sigmoid'))
opt = keras.optimizers.Adam(lr=params['lr'])
model.compile(optimizer = opt, loss = 'loss', metrics = ['mse'])
out = model.fit(x_train, y_train, epochs = params['epoch'],
batch_size =params['batches'],
validation_data =(x_val, y_val))
return out, model