0

我正在使用 limma - voom 对 RNA-seq 数据进行差异表达分析。我的数据是关于一种抗癌药物的,总共 49 个样本,其中一些是响应者,有些不是。我需要一些帮助来构建contrast. 我在这里只处理一个因素,所以只有两组。

我知道这是最简单的数据类型,但我得到的大部分数据都是差异表达的(不应该是这种情况),只有 13% 没有差异表达,我认为问题与对比度有关。这是我做的设计,1或0。

NoResponse 为 1 表示没有响应,Response 为 1 表示有响应。

使用输入:

structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), .Dim = c(49L, 
2L), .Dimnames = list(c("Pt1", "Pt10", "Pt103", "Pt106", "Pt11", 
"Pt17", "Pt2", "Pt24", "Pt26", "Pt27", "Pt28", "Pt29", "Pt31", 
"Pt36", "Pt37", "Pt38", "Pt39", "Pt4", "Pt46", "Pt47", "Pt5", 
"Pt52", "Pt59", "Pt62", "Pt65", "Pt66", "Pt67", "Pt77", "Pt78", 
"Pt79", "Pt8", "Pt82", "Pt84", "Pt85", "Pt89", "Pt9", "Pt90", 
"Pt92", "Pt98", "Pt101", "Pt18", "Pt3", "Pt30", "Pt34", "Pt44", 
"Pt48", "Pt49", "Pt72", "Pt94"), c("NoResponse", "Response")), assign = c(1L, 
1L), contrasts = list(Response = "contr.treatment"))

这是我自己分析的代码:

d0 <- DGEList(rawdata)

d0 <- calcNormFactors(d0)

Voom <- voom(d0, design, plot = TRUE)

vfit <- lmFit(Voom, design) 

contrast <- makeContrasts(Response - NoResponse,
                           levels = colnames(coef(vfit)))

vfit  <- contrasts.fit(vfit, contrasts = contrast)

efit <- eBayes(vfit) 

plotSA(efit, main = 'final model: Mean-Variance trend')

生物导体指南没有帮助。

注意:问题不在于数据。voom 情节非常好,我只是被(我认为)搞得一团糟的对比所困。

4

0 回答 0