我正在使用 MNIST 数据集实现一个完全连接的分类模型。部分代码如下:
model=tf.keras.models.Sequential([
tf.keras.layers.Input(shape=(28, 28, 1)),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(
loss='categorical_crossentropy',
optimizer=tf.optimizers.SGD(),
metrics=["accuracy"]
)
model.fit(
x_train,
y_train,
batch_size=64,
epochs=3,
validation_data=(x_test, y_test)
)
有没有办法为给定的小批量打印每一层的最大梯度?