1

我正在尝试对我的 ARIMA 模型进行预测,但我坚持了一点

from statsmodels.tsa.arima.model import ARIMA
train2 = trainData1["meantemp"][:1170]
test2 = trainData1["meantemp"][1170:]
# p,d,q ARIMA Model
model = ARIMA(train2, order=(1,1,50))
model_fit = model.fit()
print(model_fit.summary())

在这里,trainData1 将日期作为索引(您猜到的是 train2 和 test2)并使用 train2 数据训练了模型,之后我尝试对 test2 数据进行如下预测;

# make predictions
predictions = model_fit.predict(test2)
rmse = mean_squared_error(test2.values, predictions)
rmse

但它给了我以下错误;

TypeError: Cannot convert input [date
2016-03-17    2.375000
2016-03-18   -0.125000
2016-03-19    0.598214
2016-03-20    0.347619
2016-03-21   -0.508333
                ...   
2016-12-28    0.367391
2016-12-29   -1.979296
2016-12-30   -1.142857
2016-12-31    0.957393
2017-01-01   -5.052632
Name: meantemp, Length: 291, dtype: float64] of type <class 'pandas.core.series.Series'> to Timestamp

应该在预测函数内部添加什么作为数据?

train2 如下;

2013-01-02   -2.600000
2013-01-03   -0.233333
2013-01-04    1.500000
2013-01-05   -2.666667
2013-01-06    1.000000
                ...   
2016-03-12   -0.504167
2016-03-13   -0.312500
2016-03-14   -1.875000
2016-03-15    1.691667
2016-03-16   -0.129167
Name: meantemp, Length: 1170, dtype: float64

test2如下;

date
2016-03-17    2.375000
2016-03-18   -0.125000
2016-03-19    0.598214
2016-03-20    0.347619
2016-03-21   -0.508333
                ...   
2016-12-28    0.367391
2016-12-29   -1.979296
2016-12-30   -1.142857
2016-12-31    0.957393
2017-01-01   -5.052632
Name: meantemp, Length: 291, dtype: float64
4

1 回答 1

0

我解决了我自己的问题如下;

# make predictions
predictions = model_fit.forecast(291)
print(f'ARIMA Model Test Data MSE: {np.mean((predictions.values - test2.values)**2):.3f}')

使用预测功能,模型预测下一个 291 步,这里是一天,因为它是每日时间序列,并使用预测和实际测试值使用 MSE 指标进行评估。

于 2022-02-09T08:37:58.683 回答