我读过一个 csv 文件,其中包含 8 个预测特征col_list
(chd
df = pd.read_csv(loc+'HeartDisease.csv', index_col=0)
Y = df['chd']
col_list = ['sbp','tobacco','ldl','adiposity','typea','obesity','alcohol','age']
我训练了一个 XGBoost 分类器:
# fit model no training data
model = XGBClassifier(
base_score=0.1,
booster='gbtree',
colsample_bylevel=1,
colsample_bynode=1,
colsample_bytree=0.6,
enable_categorical=False,
gamma=0.1,
gpu_id=-1,
importance_type=None,
interaction_constraints='',
learning_rate=0.1,
max_delta_step=0,
max_depth=8,
min_child_weight=1,
monotone_constraints='(1,1,1,1,1,1,1,1)',#,"(1,-1)"
n_estimators=4, n_jobs=1,
nthread=1,
num_parallel_tree=1,
predictor='auto',
random_state=0,
reg_alpha=0,
reg_lambda=1,
scale_pos_weight=1,
silent=True,
subsample=0.6,
tree_method='exact',
validate_parameters=1,
verbosity=None)
然后我将树可视化:
fig, ax = plt.subplots(figsize=(30, 30))
plot_tree(model,ax=ax)
plt.show()
如何在数据框中创建一个名为“ leaf
”的列df
,其中包含上图中显示的终端叶子的值?