我从https://nlp.johnsnowlabs.com/docs/en/concepts复制了通用代码。流水线确实会加载,但是一旦我在文档上进行拟合和转换,就无法访问输出。
import sparknlp
sparknlp.start()
sentences = [
['Hello, this is an example sentence'],
['And this is a second sentence.']
]
# spark is the Spark Session automatically started by pyspark.
data = spark.createDataFrame(sentences).toDF("text")
# Download the pretrained pipeline from Johnsnowlab's servers
explain_document_pipeline = PretrainedPipeline("explain_document_ml")
annotations_df = explain_document_pipeline.transform(data)
# Show the results
annotations_df.show()
.show() 似乎不起作用,当我尝试 .count、.toPandas 等时也是如此。我使用 pyspark 3.1.2、spark-nlp 3.4.0 和 python 3.8 抛出的错误:
Py4JJavaError: An error occurred while calling o488.collectToPython.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 4 in stage 19.0 failed 1 times, most recent failure: Lost task 4.0 in stage 19.0 (TID 37) (192.168.1.10 executor driver): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/usr/local/spark/spark-3.1.2-bin-hadoop3.2/python/lib/pyspark.zip/pyspark/worker.py", line 586, in main
func, profiler, deserializer, serializer = read_command(pickleSer, infile)
File "/usr/local/spark/spark-3.1.2-bin-hadoop3.2/python/lib/pyspark.zip/pyspark/worker.py", line 69, in read_command
command = serializer._read_with_length(file)
File "/usr/local/spark/spark-3.1.2-bin-hadoop3.2/python/lib/pyspark.zip/pyspark/serializers.py", line 160, in _read_with_length
return self.loads(obj)
File "/usr/local/spark/spark-3.1.2-bin-hadoop3.2/python/lib/pyspark.zip/pyspark/serializers.py", line 430, in loads
return pickle.loads(obj, encoding=encoding)
AttributeError: Can't get attribute '_fill_function' on <module 'pyspark.cloudpickle' from '/usr/local/spark/spark-3.1.2-bin-hadoop3.2/python/lib/pyspark.zip/pyspark/cloudpickle/__init__.py'>
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:517)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:652)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:635)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:470)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:489)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:755)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:345)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:898)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:898)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:131)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:497)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1439)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:500)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2258)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2207)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2206)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2206)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1079)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1079)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1079)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2445)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2387)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2376)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:868)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2196)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2217)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2236)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2261)
at org.apache.spark.rdd.RDD.$anonfun$collect$1(RDD.scala:1030)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:414)
at org.apache.spark.rdd.RDD.collect(RDD.scala:1029)
at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:390)
at org.apache.spark.sql.Dataset.$anonfun$collectToPython$1(Dataset.scala:3519)
at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3687)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3685)
at org.apache.spark.sql.Dataset.collectToPython(Dataset.scala:3516)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/usr/local/spark/spark-3.1.2-bin-hadoop3.2/python/lib/pyspark.zip/pyspark/worker.py", line 586, in main
func, profiler, deserializer, serializer = read_command(pickleSer, infile)
File "/usr/local/spark/spark-3.1.2-bin-hadoop3.2/python/lib/pyspark.zip/pyspark/worker.py", line 69, in read_command
command = serializer._read_with_length(file)
File "/usr/local/spark/spark-3.1.2-bin-hadoop3.2/python/lib/pyspark.zip/pyspark/serializers.py", line 160, in _read_with_length
return self.loads(obj)
File "/usr/local/spark/spark-3.1.2-bin-hadoop3.2/python/lib/pyspark.zip/pyspark/serializers.py", line 430, in loads
return pickle.loads(obj, encoding=encoding)
AttributeError: Can't get attribute '_fill_function' on <module 'pyspark.cloudpickle' from '/usr/local/spark/spark-3.1.2-bin-hadoop3.2/python/lib/pyspark.zip/pyspark/cloudpickle/__init__.py'>
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:517)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:652)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:635)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:470)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:489)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:755)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:345)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:898)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:898)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:131)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:497)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1439)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:500)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more