我正在尝试将文档中的简单 GLM 示例改编为使用 Tweedie:
def create_fake_losses_data(self):
df = self._spark.createDataFrame([
("a", 100.0, 12, 1, Vectors.dense(0.0, 0.0)),
("b", 0.0, 24, 1, Vectors.dense(1.0, 2.0)),
("c", 0.0, 36, 1, Vectors.dense(0.0, 0.0)),
("d", 2000.0, 48, 1, Vectors.dense(1.0, 1.0)), ], ["user_hashed", "label", "offset", "weight", "features"])
logging.info(df.collect())
setattr(self, 'fake_data', df)
try:
glr = GeneralizedLinearRegression(
family="tweedie", variancePower=1.5, offsetCol='offset')
glr.setRegParam(0.3)
model = glr.fit(df)
logging.info(model)
except Py4JJavaError as e:
print(e)
return self
这给了我以下错误:
py4j.protocol.Py4JJavaError: An error occurred while calling o96.toString.
: java.util.NoSuchElementException: Failed to find a default value for link
at org.apache.spark.ml.param.Params.$anonfun$getOrDefault$2(params.scala:756)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.ml.param.Params.getOrDefault(params.scala:756)
at org.apache.spark.ml.param.Params.getOrDefault$(params.scala:753)
at org.apache.spark.ml.PipelineStage.getOrDefault(Pipeline.scala:41)
at org.apache.spark.ml.param.Params.$(params.scala:762)
at org.apache.spark.ml.param.Params.$$(params.scala:762)
at org.apache.spark.ml.PipelineStage.$(Pipeline.scala:41)
at org.apache.spark.ml.regression.GeneralizedLinearRegressionModel.toString(GeneralizedLinearRegression.scala:1117)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
然而,根据文档,在使用 Tweedie 时,您似乎应该保持link
未定义。所以我在这里很困惑。有没有人真的使用 PySpark(或任何版本的 Spark)进行了适当的 Tweedie 回归?这些文档也让我对使用 Tweedie之间variancePower
和使用时的区别感到困惑。linkPower
我应该使用哪个?哪一个p
在 Tweedie 发行版中?