0

我正在试验polars并想了解为什么使用polarspandas在特定示例中使用慢:

import pandas as pd
import polars as pl

n=10_000_000
df1 = pd.DataFrame(range(n), columns=['a'])
df2 = pd.DataFrame(range(n), columns=['b'])
df1p = pl.from_pandas(df1.reset_index())
df2p = pl.from_pandas(df2.reset_index())

# takes ~60 ms
df1.join(df2)

# takes ~950 ms
df1p.join(df2p, on='index')
4

1 回答 1

2

熊猫join使用缓存的索引。

他们做相同的比较:

# pandas 
# CPU times: user 1.64 s, sys: 867 ms, total: 2.5 s
# Wall time: 2.52 s
df1.merge(df2, left_on="a", right_on="b")

# polars
# CPU times: user 5.59 s, sys: 199 ms, total: 5.79 s
# Wall time: 780 ms
df1p.join(df2p, left_on="a", right_on="b")
于 2022-01-18T14:10:48.500 回答