我正在关注量化意识培训综合指南,并在 QAT 中为自定义层而苦苦挣扎,tf=2.6.0
使用py=3.9.7
. 下面是我的问题的一个玩具示例:
我写了一个简单的自定义层来实现 Conv2D
class MyConv(tf.keras.layers.Layer):
'''costume conv2d'''
def __init__(self, filt=1, name=None, **kwargs):
super(MyConv, self).__init__(name=name)
self.filt = filt
super(MyConv, self).__init__(**kwargs)
def get_config(self):
config = super().get_config().copy()
config.update({"filt": self.filt})
return config
def build(self, shape):
self.conv = tf.keras.layers.Conv2D(self.filt, 1, padding="same")
def call(self, input):
return self.conv(input)
我用那个层创建了一个小模型,然后递归地传递它的层并使用注释tfmot.guantization.keras.quantize_annotate_layer
(每个自定义层可能有更多需要量化的自定义子层)。然后我适用tfmot.quantization.keras.quantize_apply
于带注释的模型。结果模型由所有量化层组成,除了我的自定义层之外,还没有被量化。
我会注意到,当我用MyConv
下面的代码替换自定义层时,如综合指南中所示,量化是有效的。
def MyConv(tf.keras.layers.Conv2D):
pass
请帮我解决这个问题。可能是我的问题QuantizeConfig
?
以下是我的完整代码:
import tensorflow as tf
import tensorflow_model_optimization as tfmot
class MyConv(tf.keras.layers.Layer):
'''costume conv2d'''
def __init__(self, filt=1, name=None, **kwargs):
super(MyConv, self).__init__(name=name)
self.filt = filt
super(MyConv, self).__init__(**kwargs)
def get_config(self):
config = super().get_config().copy()
config.update({"filt": self.filt})
return config
def build(self, shape):
self.conv = tfmot.quantization.keras.quantize_annotate_layer(tf.keras.layers.Conv2D(self.filt, 1, padding="same"))
def call(self, input):
return self.conv(input)
def get_toy_model():
input = tf.keras.Input((10, 10, 1), name='input')
x = tf.keras.layers.Conv2D(1, 3, padding="same")(input)
x = tf.keras.layers.ReLU()(x)
x = MyConv()(x)
for _ in range(2):
y = tf.keras.layers.Conv2D(1, 3, padding="same")(x)
y = tf.keras.layers.ReLU()(y)
out = tf.keras.layers.Conv2D(1, 3, padding="same")(y)
return tf.keras.Model(input, out, name='toy_Conv2D')
LastValueQuantizer = tfmot.quantization.keras.quantizers.LastValueQuantizer
MovingAverageQuantizer = tfmot.quantization.keras.quantizers.MovingAverageQuantizer
class DefaultCostumeQuantizeConfig(tfmot.quantization.keras.QuantizeConfig):
# Configure how to quantize weights.
def get_weights_and_quantizers(self, layer):
return []
# Configure how to quantize activations.
def get_activations_and_quantizers(self, layer):
return []
def set_quantize_weights(self, layer, quantize_weights):
pass
def set_quantize_activations(self, layer, quantize_activations):
pass
# Configure how to quantize outputs (may be equivalent to activations).
def get_output_quantizers(self, layer):
return [tfmot.quantization.keras.quantizers.MovingAverageQuantizer(num_bits=8, per_axis=False, symmetric=False, narrow_range=False)]
def get_config(self):
return {}
def recursive_depth_layers(layer):
for l in list(layer.__dict__.values()):
if isinstance(l, tf.keras.layers.Layer):
recursive_depth_layers(l)
if isinstance(l, (
tf.keras.layers.Dense, tf.keras.layers.Conv2D, tf.keras.layers.ReLU, tf.keras.layers.LeakyReLU, tf.keras.layers.Activation)):
ql = tfmot.quantization.keras.quantize_annotate_layer(l, DefaultCostumeQuantizeConfig())
ql._name += "_" + l.name
return ql
def apply_quantization(layer):
# regular layer
if isinstance(layer, (tf.keras.layers.Dense, tf.keras.layers.Conv2D, tf.keras.layers.ReLU, tf.keras.layers.LeakyReLU,tf.keras.layers.Activation)):
l = tfmot.quantization.keras.quantize_annotate_layer(layer, DefaultCostumeQuantizeConfig())
l._name += '_' + layer.name
return l
if layer.__module__ == "__main__":
# custom layer
recursive_depth_layers(layer)
l = tfmot.quantization.keras.quantize_annotate_layer(layer, DefaultCostumeQuantizeConfig())
l._name += '_' + layer.name
return l
return layer
model = get_toy_model()
model.summary()
annotated_model = tf.keras.models.clone_model(model, clone_function=apply_quantization)
annotated_model.summary()
quantize_scope = tfmot.quantization.keras.quantize_scope
with quantize_scope({'DefaultCostumeQuantizeConfig': DefaultCostumeQuantizeConfig, 'MyConv': MyConv}):
quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)
quant_aware_model._name += "_quant"
quant_aware_model.summary()
quant_aware_model.compile()