x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.3,random_state=42)
rf_model= RandomForestClassifier()
rf_model.fit(x_train, y_train)
rf_pred = rf_model.predict(x_test)
import shap
rf_explainer = shap.TreeExplainer(rf_model, x_train)
rf_vals = rf_explainer.shap_values(x_train)
o/p: 100%|====================| 4778/4792 [03:26<00:00]
rf_explainer.expected_value
o/p: 数组([0.5763, 0.4237])
(虽然通过摘要图,我了解每个特征对模型的贡献是什么)(请解释一下输出均值(4778/4792 和数组([0.5763, 0.4237])中的这个数字是什么))