我试图更多地了解偏差和方差。
我想知道是否存在考虑偏差和方差的损失函数。
据我所知,高偏差会导致欠拟合,而高方差会导致过拟合。
来自这里的图像
如果我们可以考虑损失中的偏差和方差,它可能是这样的,bias(x) + variance(x) + some_other_loss(x)
. 我好奇的观点分为两部分。
- 是否有考虑偏差和方差的损失函数?
- 如果我们通常使用的损失已经考虑了偏差和方差,我如何在分数中分别衡量偏差和方差?
我认为这种问题可能是一个基本的数学问题。如果您对此有任何提示,我将不胜感激。
感谢您阅读我的奇怪问题。
写完问题后,我意识到正则化是减少方差的方法之一。那么,3)这是衡量分数偏差的方法吗?
再次感谢你。
2022 年 1 月 16 日更新
我搜索了一下并回答了自己。如有理解错误,欢迎下方评论。
-
-
- Bais 由训练期间的损失值表示,因此我们不需要额外的偏差损失函数。
-
但是对于方差,没有办法打分,因为如果我们想测量它,我们应该得到训练损失和看不见的数据损失。但是一旦我们使用看不见的数据作为训练损失,看不见的数据就是看得见的数据。因此,就模型而言,这将不再是看不见的数据。据我所知,没有办法测量训练损失的方差。
我希望其他人可以得到帮助,如果你有,请评论你的想法。