0

看看下面的代码示例:

def myFun(my_tensor):
        #The following line works
        my_tensor= tf.tensor_scatter_update(my_tensor, tf.constant([[0]]), tf.constant([1]))
        #The following line leads to error
        p = tf.cond(tf.math.equal(0, 0), lambda: 1, lambda: 1)
        my_tensor= tf.tensor_scatter_update(my_tensor, tf.constant([[p]]), tf.constant([1]))

我用一个简单的案例来描述我面临的问题这个函数(myFun)被称为 tf.while_loop 的主体(如果相关) my_tensor 的定义

my_tensor = tf.zeros(5, tf.int32)

如何定义 tf.tensor_scatter_update 的 indices 参数?我正在使用 tensorflow1.15

4

1 回答 1

1

您不能将张量p用作 的参数tf.constant。也许尝试这样的事情:

%tensorflow_version 1.x
import tensorflow as tf

def myFun(my_tensor):

    my_tensor= tf.tensor_scatter_update(my_tensor, tf.constant([[0]]), tf.constant([1]))
    p = tf.cond(tf.math.equal(0, 0), lambda: 1, lambda: 1)
    new_tensor= tf.tensor_scatter_update(my_tensor, [[p]], tf.constant([1]))

    with tf.Session() as sess:
      p_value = p.eval()
      tensor_values = my_tensor.eval()
      new_tensor_values = new_tensor.eval()

    print('p -->', p_value)
    print('my_tensor -->', tensor_values)
    print('new_tensor -->', new_tensor_values)

my_tensor = tf.zeros(5, tf.int32)
myFun(my_tensor)
p --> 1
my_tensor --> [1 0 0 0 0]
new_tensor --> [1 1 0 0 0]

您还可以环绕pa tf.Variable

def myFun(my_tensor):

    my_tensor= tf.tensor_scatter_update(my_tensor, tf.constant([[0]]), tf.constant([1]))
    p = tf.cond(tf.math.equal(0, 0), lambda: 1, lambda: 1)

    indices = tf.Variable([[p]])       
    new_tensor= tf.tensor_scatter_update(my_tensor, indices, tf.constant([1]))

    with tf.Session() as sess:
      sess.run(indices.initializer)
      p_value = p.eval()
      tensor_values = my_tensor.eval()
      new_tensor_values = new_tensor.eval()
于 2021-12-04T10:11:54.117 回答