您不能将张量p
用作 的参数tf.constant
。也许尝试这样的事情:
%tensorflow_version 1.x
import tensorflow as tf
def myFun(my_tensor):
my_tensor= tf.tensor_scatter_update(my_tensor, tf.constant([[0]]), tf.constant([1]))
p = tf.cond(tf.math.equal(0, 0), lambda: 1, lambda: 1)
new_tensor= tf.tensor_scatter_update(my_tensor, [[p]], tf.constant([1]))
with tf.Session() as sess:
p_value = p.eval()
tensor_values = my_tensor.eval()
new_tensor_values = new_tensor.eval()
print('p -->', p_value)
print('my_tensor -->', tensor_values)
print('new_tensor -->', new_tensor_values)
my_tensor = tf.zeros(5, tf.int32)
myFun(my_tensor)
p --> 1
my_tensor --> [1 0 0 0 0]
new_tensor --> [1 1 0 0 0]
您还可以环绕p
a tf.Variable
:
def myFun(my_tensor):
my_tensor= tf.tensor_scatter_update(my_tensor, tf.constant([[0]]), tf.constant([1]))
p = tf.cond(tf.math.equal(0, 0), lambda: 1, lambda: 1)
indices = tf.Variable([[p]])
new_tensor= tf.tensor_scatter_update(my_tensor, indices, tf.constant([1]))
with tf.Session() as sess:
sess.run(indices.initializer)
p_value = p.eval()
tensor_values = my_tensor.eval()
new_tensor_values = new_tensor.eval()