当我运行下面粘贴的代码时,模型只是针对“乘数”=1 或 =4 进行训练。在 google colab 中运行相同的代码 → 只训练 multiplier=1
我在这里使用 DenseNet 的方式有什么错误吗?
在此先感谢,感谢您的帮助!
import numpy as np
import tensorflow as tf
from tensorflow.keras.applications.densenet import DenseNet201
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.losses import BinaryCrossentropy
random_array = np.random.rand(128,128,3)
image = tf.convert_to_tensor(
random_array
)
label = tf.constant(0)
model = DenseNet201(
include_top=False, weights='imagenet', input_tensor=None,
input_shape=(128, 128, 3), pooling=None, classes=2
)
model.compile(
optimizer=Adam(),
loss=BinaryCrossentropy(),
metrics=['accuracy'],
)
for multiplier in range(1,20):
print(f"Using multiplier {multiplier}")
x_train = np.array([image]*multiplier)
y_train = np.array([label]*multiplier)
try:
model.fit(x=x_train,y=y_train, epochs=2)
except:
print("Not training...")
pass
如果训练没有开始,输出是:
2021-12-01 11:48:40.372387: W tensorflow/core/framework/op_kernel.cc:1680] Invalid argument: required broadcastable shapes
2021-12-01 11:48:40.372660: W tensorflow/core/framework/op_kernel.cc:1680] Invalid argument: required broadcastable shapes
2021-12-01 11:48:40.372734: W tensorflow/core/framework/op_kernel.cc:1680] Invalid argument: required broadcastable shapes