我正在使用simpletransformers库在具有 13 个不同实体的自定义数据集上微调命名实体识别 (NER) 的 BERT 模型。即使在提供之后model_args.labels_list
,也会NERModel()
产生以下错误。
RuntimeError: Error(s) in loading state_dict for BertForTokenClassification:
size mismatch for classifier.weight: copying a param with shape torch.Size([9, 768]) from checkpoint, the shape in current model is torch.Size([13, 768]).
size mismatch for classifier.bias: copying a param with shape torch.Size([9]) from checkpoint, the shape in current model is torch.Size([13]).
示例代码:
from simpletransformers.ner import NERModel, NERArgs
model_args = NERArgs()
model_args.labels_list = ["ENT1", "ENT2", "ENT3", "ENT4", "ENT5", "ENT6", "ENT7", "ENT8", "ENT9", "ENT10", "ENT11", "ENT12", "ENT13"] # this list is having thirteen entities from my dataset
model = NERModel(
"bert",
"dslim/bert-base-NER",
args=model_args,
)