我有一个循环遍历 50 个数据帧并计算一个p90_annual
为每个数据帧调用的变量。在这个循环中,我想p90_annual
在 pdf 中绘制一个页面,其中每个页面都p90_annual
用于每个数据帧。(我想要一个 50 页的 pdf,其中每一页都是p90_annual
每个数据帧的图)我目前正在使用:
with PdfPages('90thPercentile.pdf') as pdf:
plt.figure
plt.plot(p90_annual)
plt.title(j)
plt.ylabel('Days Above 90th Percentile')
pdf.savefig()
plt.close()
当我这样做时,我只会得到一个页面,其中包含最后一个p90_annual
绘制实例。我该如何修改它,以便在p90_annual
循环时为每个实例添加一个新页面?
对于上下文...下面是我试图让它在其中工作的更大循环
# Huge Loop
for j in TempDict:
#Make Baseline
df=TempDict[j]
df=pd.to_numeric(df.tmax, errors='coerce')
mask = (df.index >= '1900-01-01') & (df.index <= '1940-12-31')
Baseline=df.loc[mask]
Tmax=Baseline.astype(np.float)
Index=Baseline.index
DailyBase=pd.DataFrame(data={'date':Index,'tmax':Tmax})
#pivot dataframe
DailyBase['year']=DailyBase.date.dt.year
DailyBase['day']=DailyBase.date.dt.strftime('%m-%d')
BaseResult=DailyBase[DailyBase.day!='02-29'].pivot(index='year',columns='day',values='tmax')
#Calculate Percentiles
BaseResult.index=list(range(1,42))
BaseResult.insert(0,'12-31_',BaseResult['12-31'])
BaseResult.insert(0,'12-30_',BaseResult['12-30'])
BaseResult['01-01_'] = BaseResult['01-01']
BaseResult['01-02_'] = BaseResult['01-02']
p90_todict = {}
for i in range(len(BaseResult.columns)-4):
index = i+2
p90_todict[BaseResult.columns[index]] = np.quantile(BaseResult.iloc[:,index-2:index+3].dropna(),.9)
np.quantile(BaseResult.iloc[:,index-2:index+3].dropna(),.98)
#Make POR dataframe
#pull tmax and dates from original ACIS data
FullTmax=df.astype(np.float)
FullIndex=df.index
#create and rotate data frame
DailyPOR=pd.DataFrame(data={'date':FullIndex,'tmax':FullTmax})
DailyPOR['year']=DailyPOR.date.dt.year
DailyPOR['day']=DailyPOR.date.dt.strftime('%m-%d')
PORResult=DailyPOR[DailyPOR.day!='02-29'].pivot(index='year',columns='day',values='tmax')
#Compare POR and baseline
import copy
#eliminate leap years from POR daily data
noleap_DailyPOR = copy.copy(DailyPOR[DailyPOR.day != '02-29'])
noleap_DailyPOR.index = noleap_DailyPOR.date
#Use only winter months
only_winter = noleap_DailyPOR[(noleap_DailyPOR.index.month >= 12) | (noleap_DailyPOR.index.month <= 2)]
#set results to 0 for counts
p90results = pd.DataFrame(index = only_winter.date)
p90results['above90'] = 0
#Compare POR and percentiles
for index, row in only_winter.iterrows():
if row.tmax > p90_todict[row.day]:
p90results.loc[row.date,'above90'] = 1
#Sum annual counts above percentiles
p90_annual=p90results.groupby(p90results.index.year).sum()
with PdfPages('90thPercentile.pdf') as pdf:
plt.rcParams['text.usetex'] = False
plt.figure
plt.plot(p90_annual)
plt.title(j)
plt.ylabel('Days Above 90th Percentile')
pdf.savefig()
plt.close()