1

我想使用神秘求解器来解决以下具有非线性约束的非线性优化问题。这里的代码:

import numpy as np
import matplotlib.pyplot as plt
from math import sqrt
from mystic.solvers import diffev2, fmin, fmin_powell
from mystic.monitors import VerboseMonitor
from mystic.penalty import quadratic_inequality, quadratic_equality

def pos_scale(c, q):
    return 1.0 / (1 + c*sqrt(q))

def omega_scaled(w, c, q):
    return min(w, pos_scale(c, q))

def constraints(q1, q2, w1, w2, c1, c2, fx1, fx2):
    #print('{} {}'.format(q1, q2))
    v1 = omega_scaled(w1, c1, q1)*q1*fx1
    v2 = omega_scaled(w2, c2, q2)*q2*fx2
    return v1 + v2

constraints_f = lambda q1, q2: constraints(q1, q2, 0.95, 0.92, 0.06, 0.05, 10000, 1000)
constraints_v = np.vectorize(constraints_f)

def cost(q1, q2, w1, w2, c1, c2, fx1, fx2):
    v1 = (1-omega_scaled(w1, c1, q1))*q1*fx1
    v2 = (1-omega_scaled(w2, c2, q2))*q2*fx2
    return v1 + v2

cost_f = lambda q1, q2: cost(q1, q2, 0.95, 0.92, 0.06, 0.04, 10000, 1000)
cost_v = np.vectorize(cost_f)

objective = lambda x: cost_v(x[0], x[1]).item()

def penalty_value(x, target):
    return target - constraints_f(x[0], x[1])

@quadratic_inequality(penalty_value, kwds={'target': 200000.0})
def penalty(x):
  return 0.0

我用二次惩罚对约束进行建模。约束要求域是正正交。

mon = VerboseMonitor(10)
bounds=[(0, 50), (0, 300)]
result = fmin(objective, x0=[15, 150], bounds=bounds, penalty=penalty, 
              npop=10, gtol=200, disp=False, full_output=True, itermon=mon, maxiter=500)

result


Generation 0 has ChiSquare: 77606.160271
Generation 10 has ChiSquare: 62080.449073
Generation 20 has ChiSquare: 55726.285526
Generation 30 has ChiSquare: 55505.829370
Generation 40 has ChiSquare: 55478.612377
Generation 50 has ChiSquare: 55475.462051
Generation 60 has ChiSquare: 55474.597220
Generation 70 has ChiSquare: 55474.532390
Generation 80 has ChiSquare: 55474.530891
Generation 90 has ChiSquare: 55474.530773
STOP("CandidateRelativeTolerance with {'xtol': 0.0001, 'ftol': 0.0001}")
(array([21.50326424, 42.0783277 ]), 55474.53077292251, 98, 177, 0)

如果我使用合理的起始值,求解器会找到最佳解决方案。但是,另一个起始值(或另一个求解器,如 Powell 求解器)会在步骤搜索中触发对有效域之外的约束函数的调用。

如何最好地将惩罚中的约束函数限制在我提供给求解器的范围内?求解器本身不应该检查吗?或者我是否也需要在约束功能中自己处理?

可视化解决方案:

fig = plt.figure(figsize=(12,6))
left, bottom, width, height = 0.1, 0.1, 0.8, 0.8
ax = fig.add_axes([left, bottom, width, height])

q1 = np.linspace(0.1, 50, 100)
q2 = np.linspace(1, 300, 100)
X, Y = np.meshgrid(q1, q2)

Z = constraints_v(X, Y)
cp1 = plt.contour(X, Y, Z, 20, colors='black', linestyles='dashed')
cp2 = plt.contour(X, Y, Z, [200000], colors='white', linestyles='solid')
plt.clabel(cp2, inline=True, fontsize=12)

Z = cost_v(X, Y)
cp3 = plt.contourf(X, Y, Z, 25)
plt.colorbar(cp3)

sol = list(result[0])
plt.plot(sol[0], sol[1], 'go--', linewidth=2, markersize=14)

在此处输入图像描述

4

1 回答 1

1

我是mystic作者。惩罚函数本质上是软约束,因此可以违反。当他们是,他们将增加一个惩罚cost。如果你想明确限制输入值,那么你需要一个硬约束......用constraints关键字给出。因此,添加以下内容以确保始终从正数中选择候选解决方案(即从您选择的范围内)。

...[snip]...

import mystic.symbolic as ms
from mystic.constraints import and_
bounds = '''
x0 >= 0
x0 <= 50
x1 >= 0
x1 <= 300
'''
eqn = ms.simplify(bounds, all=True)
cons = ms.generate_constraint(ms.generate_solvers(eqn), join=and_)

mon = VerboseMonitor(10)
bounds=[(0, 50), (0, 300)]
result = fmin_powell(objective, x0=[15, 150], bounds=bounds, penalty=penalty,
                     npop=10, gtol=200, disp=False, full_output=True,
                     constraints=cons, itermon=mon, maxiter=500)

我打开了一个功能请求来自动执行此操作,或者至少使用切换/标志 - 但目前,您需要手动将边界添加到硬约束。

于 2021-11-13T15:52:17.107 回答