0

从 Arduino Form 交叉发布我的问题,以获得更多的目光并希望得到更多的答案

我正在尝试使用两个 Nano 33 BLE Senses 制作一根魔杖。我的目标是让一个 Arduino(魔杖)收集加速度计和语音数据。当它检测到一个特定的短语和一个动作(目前该动作是非特定的)时,它会触发一个动作命令让另一个 arduino 做某事。在我的情况下,另一个 arduino 将为一个小电机供电,该电机将解锁一个盒子。当在特定时间窗口内检测到两种动作时,我可以通过打开内置蓝光使声音和动作协同工作,但我似乎无法弄清楚如何让 wand arduino 向动作arduino。有人知道我在做什么错吗?或者有没有人做过类似的东西并且不介意分享代码?我已经试穿了几个月了,我很沮丧,我不能

这是我一起弗兰肯斯坦编写的不发送数据的魔杖代码。

#define GREEN 23
#define BLUE 24
#define EIDSP_QUANTIZE_FILTERBANK   0

#define EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW 3

/* Includes ---------------------------------------------------------------- */
#include <PDM.h>
#include <Alohomora_inferencing.h>
#include <Arduino_LSM9DS1.h>

#include <ArduinoBLE.h>
#include <Arduino_APDS9960.h>
//BLEService batteryService("1101");

const char* deviceServiceUuid = "19b10000-e8f2-537e-4f6c-d104768a1214";
const char* deviceServiceCharacteristicUuid = "19b10001-e8f2-537e-4f6c-d104768a1214";

BLEService gestureService(deviceServiceUuid); 
BLECharacteristic gestureCharacteristic(deviceServiceCharacteristicUuid, BLERead | BLEWrite);


int gesture = -1;
int oldGestureValue = -1;
int LEDon = 0;   

/** Audio buffers, pointers and selectors */
typedef struct {
    signed short *buffers[2];
    unsigned char buf_select;
    unsigned char buf_ready;
    unsigned int buf_count;
    unsigned int n_samples;
} inference_t;

static inference_t inference;
static bool record_ready = false;
static signed short *sampleBuffer;
static bool debug_nn = false; // Set this to true to see e.g. features generated from the raw signal
static int print_results = -(EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW);

static const int led_pin = LED_BUILTIN;
int VoiceOn = 0;
int GsOn = 0;


/**
 * @brief      Arduino setup function
 */
void setup()
{
 Serial.begin(9600);
  while (!Serial);
  
  if (!APDS.begin()) {
    Serial.println("* Error initializing APDS9960 sensor!");
  } 

  APDS.setGestureSensitivity(80); 
  
  if (!BLE.begin()) {
    Serial.println("* Starting BLE module failed!");
    while (1);
  }
  
  BLE.setLocalName("Nano 33 BLE (Central)"); 
  BLE.advertise();

  Serial.println("Arduino Nano 33 BLE Sense (Central Device)");
  Serial.println(" ");
  

  pinMode(led_pin, OUTPUT);
  
    // put your setup code here, to run once:
    Serial.begin(115200);

    Serial.println("Edge Impulse Inferencing Demo");

    // summary of inferencing settings (from model_metadata.h)
    ei_printf("Inferencing settings:\n");
    ei_printf("\tInterval: %.2f ms.\n", (float)EI_CLASSIFIER_INTERVAL_MS);
    ei_printf("\tFrame size: %d\n", EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE);
    ei_printf("\tSample length: %d ms.\n", EI_CLASSIFIER_RAW_SAMPLE_COUNT / 16);
    ei_printf("\tNo. of classes: %d\n", sizeof(ei_classifier_inferencing_categories) /
                                            sizeof(ei_classifier_inferencing_categories[0]));

    run_classifier_init();
    if (microphone_inference_start(EI_CLASSIFIER_SLICE_SIZE) == false) {
        ei_printf("ERR: Failed to setup audio sampling\r\n");
        return;
    }

      Serial.begin(9600);
  while (!Serial);
  Serial.println("Started");

  if (!IMU.begin()) {
    Serial.println("Failed to initialize IMU!");
    while (1);
  }

  Serial.print("Accelerometer sample rate = ");
  Serial.print(IMU.accelerationSampleRate());
  Serial.println(" Hz");
  Serial.println();
  Serial.println("Acceleration in G's");
  Serial.println("X\tY\tZ");


   BLE.setAdvertisedService(gestureService);
  gestureService.addCharacteristic(gestureCharacteristic);
}

/**
 * @brief      Arduino main function. Runs the inferencing loop.
 */
void loop()
{
   connectToPeripheral();
  startA();
 
}

/**
 * @brief      Printf function uses vsnprintf and output using Arduino Serial
 *
 * @param[in]  format     Variable argument list
 */
void ei_printf(const char *format, ...) {
    static char print_buf[1024] = { 0 };

    va_list args;
    va_start(args, format);
    int r = vsnprintf(print_buf, sizeof(print_buf), format, args);
    va_end(args);

    if (r > 0) {
        Serial.write(print_buf);
    }
}


void connectToPeripheral(){
  BLEDevice peripheral;
  
  Serial.println("- Discovering peripheral device...");

  do
  {
    BLE.scanForUuid(deviceServiceUuid);
    peripheral = BLE.available();
  } while (!peripheral);
  
  if (peripheral) {
    Serial.println("* Peripheral device found!");
    Serial.print("* Device MAC address: ");
    Serial.println(peripheral.address());
    Serial.print("* Device name: ");
    Serial.println(peripheral.localName());
    Serial.print("* Advertised service UUID: ");
    Serial.println(peripheral.advertisedServiceUuid());
    Serial.println(" ");
    BLE.stopScan();
    controlPeripheral(peripheral);
  }
}

void controlPeripheral(BLEDevice peripheral) {
  Serial.println("- Connecting to peripheral device...");

  if (peripheral.connect()) {
    Serial.println("* Connected to peripheral device!");
    Serial.println(" ");
  } else {
    Serial.println("* Connection to peripheral device failed!");
    Serial.println(" ");
    return;
  }

  Serial.println("- Discovering peripheral device attributes...");
  if (peripheral.discoverAttributes()) {
    Serial.println("* Peripheral device attributes discovered!");
    Serial.println(" ");
  } else {
    Serial.println("* Peripheral device attributes discovery failed!");
    Serial.println(" ");
    peripheral.disconnect();
    return;
  }
 BLECharacteristic gestureCharacteristic = peripheral.characteristic(deviceServiceCharacteristicUuid);
  
  
  while (peripheral.connected()) {
    LEDon = startA();
   gestureCharacteristic.writeValue((byte)LEDon);
  
  }
  Serial.println("- Peripheral device disconnected!");
}



/**
 * @brief      PDM buffer full callback
 *             Get data and call audio thread callback
 */
static void pdm_data_ready_inference_callback(void)
{
    int bytesAvailable = PDM.available();

    // read into the sample buffer
    int bytesRead = PDM.read((char *)&sampleBuffer[0], bytesAvailable);

    if (record_ready == true) {
        for (int i = 0; i<bytesRead>> 1; i++) {
            inference.buffers[inference.buf_select][inference.buf_count++] = sampleBuffer[i];

            if (inference.buf_count >= inference.n_samples) {
                inference.buf_select ^= 1;
                inference.buf_count = 0;
                inference.buf_ready = 1;
            }
        }
    }
}

/**
 * @brief      Init inferencing struct and setup/start PDM
 *
 * @param[in]  n_samples  The n samples
 *
 * @return     { description_of_the_return_value }
 */
static bool microphone_inference_start(uint32_t n_samples)
{
    inference.buffers[0] = (signed short *)malloc(n_samples * sizeof(signed short));

    if (inference.buffers[0] == NULL) {
        return false;
    }

    inference.buffers[1] = (signed short *)malloc(n_samples * sizeof(signed short));

    if (inference.buffers[0] == NULL) {
        free(inference.buffers[0]);
        return false;
    }

    sampleBuffer = (signed short *)malloc((n_samples >> 1) * sizeof(signed short));

    if (sampleBuffer == NULL) {
        free(inference.buffers[0]);
        free(inference.buffers[1]);
        return false;
    }

    inference.buf_select = 0;
    inference.buf_count = 0;
    inference.n_samples = n_samples;
    inference.buf_ready = 0;

    // configure the data receive callback
    PDM.onReceive(&pdm_data_ready_inference_callback);

    PDM.setBufferSize((n_samples >> 1) * sizeof(int16_t));

    // initialize PDM with:
    // - one channel (mono mode)
    // - a 16 kHz sample rate
    if (!PDM.begin(1, EI_CLASSIFIER_FREQUENCY)) {
        ei_printf("Failed to start PDM!");
    }

    // set the gain, defaults to 20
    PDM.setGain(127);

    record_ready = true;

    return true;
}

/**
 * @brief      Wait on new data
 *
 * @return     True when finished
 */
static bool microphone_inference_record(void)
{
    bool ret = true;

    if (inference.buf_ready == 1) {
        ei_printf(
            "Error sample buffer overrun. Decrease the number of slices per model window "
            "(EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW)\n");
        ret = false;
    }

    while (inference.buf_ready == 0) {
        delay(1);
    }

    inference.buf_ready = 0;

    return ret;
}

/**
 * Get raw audio signal data
 */
static int microphone_audio_signal_get_data(size_t offset, size_t length, float *out_ptr)
{
    numpy::int16_to_float(&inference.buffers[inference.buf_select ^ 1][offset], out_ptr, length);

    return 0;
}

/**
 * @brief      Stop PDM and release buffers
 */
static void microphone_inference_end(void)
{
    PDM.end();
    free(inference.buffers[0]);
    free(inference.buffers[1]);
    free(sampleBuffer);
}



int startA(){
    
  for (int i = 0; i <= 50; i++) {
  float x, y, z;

  if (IMU.accelerationAvailable()) {
    IMU.readAcceleration(x, y, z);

    Serial.print(x);
    Serial.print('\t');
    Serial.print(y);
    Serial.print('\t');
    Serial.println(z);
  
  if (abs(x) > 1.8 or abs(y) > 1.8) {
      digitalWrite(GREEN,LOW);
      GsOn = 1;
  }
    bool m = microphone_inference_record();
    if (!m) {
        ei_printf("ERR: Failed to record audio...\n");
        return LEDon;
    }

    signal_t signal;
    signal.total_length = EI_CLASSIFIER_SLICE_SIZE;
    signal.get_data = &microphone_audio_signal_get_data;
    ei_impulse_result_t result = {0};

    EI_IMPULSE_ERROR r = run_classifier_continuous(&signal, &result, debug_nn);
    if (r != EI_IMPULSE_OK) {
        ei_printf("ERR: Failed to run classifier (%d)\n", r);
        return LEDon;
    }

    //Turn on LED if "Alohomora" value is above a threshold

    if (result.classification[0].value > 0.9)  {
      digitalWrite(led_pin, HIGH);
      VoiceOn = 1;
    } else {
      digitalWrite(led_pin, LOW);
    }
      
    if (++print_results >= (EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW)) {
        // print the predictions
        ei_printf("Predictions ");
        ei_printf("(DSP: %d ms., Classification: %d ms., Anomaly: %d ms.)",
            result.timing.dsp, result.timing.classification, result.timing.anomaly);
        ei_printf(": \n");
        for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
            ei_printf("    %s: %.5f\n", result.classification[ix].label,
                      result.classification[ix].value);
        }
#if EI_CLASSIFIER_HAS_ANOMALY == 1
        ei_printf("    anomaly score: %.3f\n", result.anomaly);
#endif

        print_results = 0;
    }
if (VoiceOn == 1 && GsOn == 1){  //(result.classification[0].value > 0.7 && (abs(x) > 2 or abs(y) > 2) )
  //Send bluetooth commannd to motor
digitalWrite(BLUE,LOW);
  LEDon = 0;
   guestureCharacteristic.writeValue(LEDon);
  sendmessage();
}
    digitalWrite(GREEN, HIGH);
}
}
VoiceOn = 0;
GsOn = 0;
digitalWrite(BLUE, HIGH);
LEDon = 0;
 //sendmessage();
}
int sendmessage(){
//LEDon = 1;
 
  return LEDon;
}


#if !defined(EI_CLASSIFIER_SENSOR) || EI_CLASSIFIER_SENSOR != EI_CLASSIFIER_SENSOR_MICROPHONE
#error "Invalid model for current sensor."
#endif

这是动作 Arduino 代码。所以这段代码应该从魔杖 Arduino 接收“ok”,告诉它打开盒子。

#include <ArduinoBLE.h>
      
enum {
  ON = 1,
  OFF = 0,
};

const char* deviceServiceUuid = "19b10000-e8f2-537e-4f6c-d104768a1214";
const char* deviceServiceCharacteristicUuid = "19b10001-e8f2-537e-4f6c-d104768a1214";

int LEDon = 0;

BLEService gestureService(deviceServiceUuid); 
BLEByteCharacteristic gestureCharacteristic(deviceServiceCharacteristicUuid, BLERead | BLEWrite);


void setup() {
  Serial.begin(9600);
  while (!Serial);  
  
  pinMode(LEDR, OUTPUT);
  pinMode(LEDG, OUTPUT);
  pinMode(LEDB, OUTPUT);
  pinMode(LED_BUILTIN, OUTPUT);
  
  digitalWrite(LEDR, HIGH);
  digitalWrite(LEDG, HIGH);
  digitalWrite(LEDB, HIGH);
  digitalWrite(LED_BUILTIN, LOW);

  
  if (!BLE.begin()) {
    Serial.println("- Starting BLE module failed!");
    while (1);
  }

  BLE.setLocalName("Arduino Nano 33 BLE (Peripheral)");
  BLE.setAdvertisedService(gestureService);
  gestureService.addCharacteristic(gestureCharacteristic);
  BLE.addService(gestureService);
  gestureCharacteristic.writeValue(-1);
  BLE.advertise();

  Serial.println("Nano 33 BLE (Peripheral Device)");
  Serial.println(" ");
}

void loop() {
  BLEDevice central = BLE.central();
  Serial.println("- Discovering central device...");
  delay(500);

  if (central) {
    Serial.println("* Connected to central device!");
    Serial.print("* Device MAC address: ");
    Serial.println(central.address());
    Serial.println(" ");

    while (central.connected()) {
      if (gestureCharacteristic.written()) {
         LEDon = gestureCharacteristic.value();
         writeGesture(LEDon);
       }
    }
    
    Serial.println("* Disconnected to central device!");
  }
}

void writeGesture(int LEDon) {
  Serial.println("- Characteristic <gesture_type> has changed!");
  
   if(LEDon = 0){
  Serial.println("* Actual value: UP (red LED on)");
        Serial.println(" ");
        digitalWrite(LEDR, LOW);
        digitalWrite(LEDG, HIGH);
        digitalWrite(LEDB, HIGH);
        digitalWrite(LED_BUILTIN, LOW);
        
  }
        else if(LEDon = 1){
Serial.println("* Actual value: DOWN (green LED on)");
        Serial.println(" ");
        digitalWrite(LEDR, HIGH);
        digitalWrite(LEDG, LOW);
        digitalWrite(LEDB, HIGH);
        digitalWrite(LED_BUILTIN, LOW);
       
          
  }
}
4

0 回答 0