我想用 Keras 调谐器对 Keras 模型进行超参数调整。
import tensorflow as tf
from tensorflow import keras
import keras_tuner as kt
def model_builder(hp):
model = keras.Sequential()
model.add(keras.layers.Flatten(input_shape=(28, 28)))
hp_units = hp.Int('units', min_value=32, max_value=512, step=32)
model.add(keras.layers.Dense(units=hp_units, activation='relu'))
model.add(keras.layers.Dense(10))
hp_learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3, 1e-4])
model.compile(optimizer=keras.optimizers.Adam(learning_rate=hp_learning_rate),
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
return model
tuner = kt.Hyperband(model_builder,
objective='val_accuracy',
max_epochs=10,
factor=3)
tuner.search(train_X, train_y, epochs=50)
到目前为止,一切都很好。但是,我还想定义一些模型参数(如输入图像尺寸)作为输入参数model_builder
,我一无所知,该怎么做:
def model_builder(hp, img_dim1, img_dim2):
model = keras.Sequential()
model.add(keras.layers.Flatten(input_shape=(img_dim1, img_dim2)))
...
和
tuner = kt.Hyperband(model_builder(img_dim1, img_dim2),
objective='val_accuracy',
max_epochs=10,
factor=3)
似乎不起作用。如何喂给img_dim1, img_dim2
模型以外的东西hp
?