2

我正在尝试根据数据块笔记本中的代码打包我的 jar。

我有以下行在databricks中有效,但在scala代码中引发错误:

import com.databricks.dbutils_v1.DBUtilsHolder.dbutils

val spark = SparkSession
                  .builder()
                  .appName("myApp")
                  .master("local")
                  .enableHiveSupport()
                  .getOrCreate()

val sc = SparkContext.getOrCreate()
val sqlContext = new org.apache.spark.sql.SQLContext(sc)

import spark.implicits._
import sqlContext.implicits._

...

var file_details = dbutils.fs.ls(folder_path2).toDF()

这给出了错误:

error: value toDF is not a member of Seq[com.databricks.backend.daemon.dbutils.FileInfo]

有谁知道如何dbutils.fs.ls().toDF()在 Scala .jar 中使用?


编辑:我为 pyspark发现了一个类似的问题,我正在尝试将其翻译为 Scala:

val dbutils = com.databricks.service.DBUtils

val ddlSchema = new ArrayType(
                    new StructType()
                        .add("path",StringType)
                        .add("name",StringType)
                        .add("size",IntegerType)
                , true)

var folder_path = "abfss://container@storage.dfs.core.windows.net"
var file_details = dbutils.fs.ls(folder_path)

var df = spark.createDataFrame(sc.parallelize(file_details),ddlSchema)

但我收到此错误:

error: overloaded method value createDataFrame with alternatives:
  (data: java.util.List[_],beanClass: Class[_])org.apache.spark.sql.DataFrame <and>
  (rdd: org.apache.spark.api.java.JavaRDD[_],beanClass: Class[_])org.apache.spark.sql.DataFrame <and>
  (rdd: org.apache.spark.rdd.RDD[_],beanClass: Class[_])org.apache.spark.sql.DataFrame <and>
  (rows: java.util.List[org.apache.spark.sql.Row],schema: org.apache.spark.sql.types.StructType)org.apache.spark.sql.DataFrame <and>
  (rowRDD: org.apache.spark.api.java.JavaRDD[org.apache.spark.sql.Row],schema: org.apache.spark.sql.types.StructType)org.apache.spark.sql.DataFrame <and>
  (rowRDD: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row],schema: org.apache.spark.sql.types.StructType)org.apache.spark.sql.DataFrame
 cannot be applied to (org.apache.spark.rdd.RDD[com.databricks.service.FileInfo], org.apache.spark.sql.types.ArrayType)
       var df = spark.createDataFrame(sc.parallelize(file_details),ddlSchema)
4

2 回答 2

0

为了触发隐式转换为类似容器的数据集然后toDF()可用,您还需要一个隐式 spark 编码器(除了已经存在的spark.implicits._

我认为这种自动推导将起作用并将toDF()提供:

  val implicit encoder = org.apache.spark.sql.Encoders.product[com.databricks.backend.daemon.dbutils.FileInfo]

否则,是的,您可以直接使用 RDD。

于 2021-11-18T14:56:59.680 回答
0

好,我知道了!!!这是我使用的代码:

var file_details = dbutils.fs.ls(folder_path)
var fileData = file_details.map(x => (x.path, x.name, x.size.toString))
var rdd = sc.parallelize(fileData)
val rowRDD = rdd.map(attributes => Row(attributes._1, attributes._2, attributes._3.toInt))

val schema = StructType( Array(
                 StructField("path", StringType,true),
                 StructField("name", StringType,true),
                 StructField("size", IntegerType,true)
             ))

var fileDf = spark.createDataFrame(rowRDD, schema)
于 2021-10-27T17:55:40.977 回答