如果您只想检查网格上函数的有界性,您可以执行类似的操作
program verify_convergence
implicit none
integer, parameter :: dp = selected_real_kind(15, 307)
real(dp) :: centre_point(2)
real(dp) :: step_size(2)
integer :: no_steps(2)
real(dp) :: point(2)
real(dp) :: derivative(2)
real(dp) :: threshold
integer :: i,j
real(dp) :: x,y
! Set fixed parameters
centre_point = [4.4_dp, 1.0_dp]
step_size = [0.1_dp, 0.1_dp]
no_steps = [10, 10]
threshold = 0.1_dp
! Loop over a 2-D grid of points around the centre point
do i=-no_steps(1),no_steps(1)
do j=-no_steps(2),no_steps(2)
! Generate the point, calculate the derivative at that point,
! and stop with a message if the derivative is not bounded.
point = centre_point + [i*step_size(1), j*step_size(2)]
derivative = calculate_derivative(point)
if (any(abs(derivative)>threshold)) then
write(*,*) 'Derivative not bounded'
stop
endif
enddo
enddo
write(*,*) 'Derivative bounded'
contains
! Takes a co-ordinate, and returns the derivative.
! Replace this with whatever function you actually need.
function calculate_derivative(point) result(output)
real(dp), intent(in) :: point(2)
real(dp) :: output(2)
output = [sqrt(7-point(2)), -sqrt(point(1)-4)]
end function
end program
我知道该功能calculate_derivative
不能满足您的要求,但我不确定您真正想要的功能是什么。只需根据需要替换此功能即可。