1

我正在尝试通过 R / RStoolbox 将 Landsat 8 文件转换为反射率

我正在使用带有以下代码的脚本:

metaData  <- readMeta("LC08_L1TP_183033_20210623_20210630_02_T1_MTL.txt")
lsat <- stackMeta("LC08_L1TP_183033_20210623_20210630_02_T1_MTL.txt")
lsat_sref <- radCor(lsat, metaData, method = "dos")

我有这个错误:

Error in CRS(paste0(c("+proj=", "+zone=", "+units=m +datum="), pars, collapse = " ")) :
  No spaces permitted in PROJ4 argument-value pairs: +proj= +zone= +units=m +datum=

你能帮我吗?

4

1 回答 1

0

问题在于您的第二行代码。您需要按如下方式更改它,它应该可以工作:

lsat <- stackMeta(metaData)

请在下面找到一个小代表来向您展示它是如何工作的:

代表

library(RStoolbox)

mtlFile  <- system.file("external/landsat/LT52240631988227CUB02_MTL.txt", package="RStoolbox")
metaData <- readMeta(mtlFile)
lsat <- stackMeta(metaData)
lsat_sref <- radCor(lsat, metaData, method = "dos")

lsat_sref
#> class      : RasterStack 
#> dimensions : 310, 287, 88970, 7  (nrow, ncol, ncell, nlayers)
#> resolution : 30, 30  (x, y)
#> extent     : 619395, 628005, -419505, -410205  (xmin, xmax, ymin, ymax)
#> crs        : +proj=utm +zone=22 +datum=WGS84 +units=m +no_defs 
#> names      :       B1_sre,       B2_sre,       B3_sre,       B4_sre,       B5_sre,        B6_bt,       B7_sre 
#> min values :   0.01327889,   0.00000000,   0.00000000,   0.00000000,   0.00000000, 293.37508120,   0.00000000 
#> max values :    0.2028536,    0.1935375,    0.2243498,    0.4356817,    0.3393489,  299.8284592,    0.2617160

reprex 包(v2.0.1)于 2021 年 10 月 12 日创建

编辑

的输出summary()

summary(metaData)
#> Scene:      LT52240631988227CUB02 
#> Satellite:  LANDSAT5 
#> Sensor:     TM 
#> Date:       1988-08-14 
#> Path/Row:   224/63 
#> Projection: +proj=utm +zone=22 +datum=WGS84 +units=m +no_defs
#> 
#> Data:
#>                              FILES QUANTITY CATEGORY
#> B1_dn LT52240631988227CUB02_B1.TIF       dn    image
#> B2_dn LT52240631988227CUB02_B2.TIF       dn    image
#> B3_dn LT52240631988227CUB02_B3.TIF       dn    image
#> B4_dn LT52240631988227CUB02_B4.TIF       dn    image
#> B5_dn LT52240631988227CUB02_B5.TIF       dn    image
#> B6_dn LT52240631988227CUB02_B6.TIF       dn    image
#> B7_dn LT52240631988227CUB02_B7.TIF       dn    image
#> 
#> Available calibration parameters (gain and offset):
#>  dn -> radiance (toa)
#>  dn -> brightness temperature (toa)

reprex 包(v2.0.1)于 2021 年 10 月 12 日创建

编辑 2

我想我找到了你的问题。从网站https://earthexplorer.usgs.gov/下载时,除了 .mtl 元数据文件之外,您通常还会获得总共 12 个辐射测量波段(即 B1-B11,以及一个“专用评估质量波段”-即Bqa)。所有这些文件必须在同一个文件夹中,并且您不得删除其中任何一个(其中一些用于辐射校正)。换句话说,包RSToolbox需要这些不同的文件。

如果你这样做,一切都应该工作。

这是我下载的 landsat 8 图像的示例(不是代表),所有代码都有效:

library(RStoolbox)
metaData <- readMeta("DATA_09/Landsat8/Landsat8_RAW/LC08_L1TP_016030_20160927_20170220_01_T1_MTL.txt")

# NB : Please, note the presence of all the bands (B1-B11 + Band qa):

summary(metaData)
#> Scene:      LC80160302016271LGN01 
#> Satellite:  LANDSAT8 
#> Sensor:     OLI_TIRS 
#> Date:       2016-09-27 
#> Path/Row:   16/30 
#> Projection: +proj=utm +zone=18 +datum=WGS84 +units=m +no_defs

#> Data:
#>                                                   FILES QUANTITY CATEGORY
#> B1_dn   LC08_L1TP_016030_20160927_20170220_01_T1_B1.TIF       dn    image
#> B2_dn   LC08_L1TP_016030_20160927_20170220_01_T1_B2.TIF       dn    image
#> B3_dn   LC08_L1TP_016030_20160927_20170220_01_T1_B3.TIF       dn    image
#> B4_dn   LC08_L1TP_016030_20160927_20170220_01_T1_B4.TIF       dn    image
#> B5_dn   LC08_L1TP_016030_20160927_20170220_01_T1_B5.TIF       dn    image
#> B6_dn   LC08_L1TP_016030_20160927_20170220_01_T1_B6.TIF       dn    image
#> B7_dn   LC08_L1TP_016030_20160927_20170220_01_T1_B7.TIF       dn    image
#> B9_dn   LC08_L1TP_016030_20160927_20170220_01_T1_B9.TIF       dn    image
#> B10_dn LC08_L1TP_016030_20160927_20170220_01_T1_B10.TIF       dn    image
#> B11_dn LC08_L1TP_016030_20160927_20170220_01_T1_B11.TIF       dn    image
#> B8_dn   LC08_L1TP_016030_20160927_20170220_01_T1_B8.TIF       dn      pan
#> QA_dn  LC08_L1TP_016030_20160927_20170220_01_T1_BQA.TIF       dn       qa
#>
#> Available calibration parameters (gain and offset):
#>  dn -> radiance (toa)
#>  dn -> reflectance (toa)
#>  dn -> brightness temperature (toa)

lsat <- stackMeta(metaData)
lsat
#> class      : RasterStack 
#> dimensions : 504, 541, 272664, 10  (nrow, ncol, ncell, nlayers)
#> resolution : 30, 30  (x, y)
#> extent     : 318195, 334425, 4737735, 4752855  (xmin, xmax, ymin, ymax)
#> crs        : +proj=utm +zone=18 +datum=WGS84 +units=m +no_defs 
#> names      : B1_dn, B2_dn, B3_dn, B4_dn, B5_dn, B6_dn, B7_dn, B9_dn, B10_dn, #> B11_dn 
#> min values :  8492,  7617,  6777,  6026,  5290,  5185,  5142,  4995,  22328,  #> 20666 
#> max values : 19081, 19935, 21595, 22716, 27590, 38013, 39165,  5105,  30111,  #> 27137 


lsat_sref <- radCor(lsat, metaData, method = "dos")
lsat_sref
#> class      : RasterStack 
#> dimensions : 504, 541, 272664, 10  (nrow, ncol, ncell, nlayers)
#> resolution : 30, 30  (x, y)
#> extent     : 318195, 334425, 4737735, 4752855  (xmin, xmax, ymin, ymax)
#> crs        : +proj=utm +zone=18 +datum=WGS84 +units=m +no_defs 
#> names      :       B1_sre,       B2_sre,       B3_sre,       B4_sre,        B5_sre,       B6_sre,       B7_sre,       B9_sre,       B10_bt,       B11_bt 
#> min values : 1.078127e-01, 7.822588e-02, 5.389152e-02, 3.082883e-02, 8.681202e-03, 5.291948e-03, 3.968224e-03, 0.000000e+00, 2.847589e+02, 2.830717e+02 
#> max values : 4.347280e-01, 4.464235e-01, 5.032560e-01, 5.323340e-01, 6.762622e-01, 9.449113e-01, 9.547490e-01, 3.183901e-03, 3.039071e+02, 3.018956e+02 

于 2021-10-12T11:05:38.160 回答