考虑到您有一个与此类似的基本模型这一事实:
input_layer = layers.Input(shape=(50,20))
layer = layers.Dense(123, activation = 'relu')
layer = layers.LSTM(128, return_sequences = True)(layer)
outputs = layers.Dense(20, activation='softmax')(layer)
model = Model(input_layer,outputs)
您将如何实施 CTC 损失?我从关于 OCR 的 keras 代码教程中尝试了一些东西,如下所示:
class CTCLayer(layers.Layer):
def __init__(self, name=None):
super().__init__(name=name)
self.loss_fn = keras.backend.ctc_batch_cost
def call(self, y_true, y_pred):
# Compute the training-time loss value and add it
# to the layer using `self.add_loss()`.
batch_len = tf.cast(tf.shape(y_true)[0], dtype="int64")
input_length = tf.cast(tf.shape(y_pred)[1], dtype="int64")
label_length = tf.cast(tf.shape(y_true)[1], dtype="int64")
input_length = input_length * tf.ones(shape=(batch_len, 1), dtype="int64")
label_length = label_length * tf.ones(shape=(batch_len, 1), dtype="int64")
loss = self.loss_fn(y_true, y_pred, input_length, label_length)
self.add_loss(loss)
# At test time, just return the computed predictions
return y_pred
labels = layers.Input(shape=(None,), dtype="float32")
input_layer = layers.Input(shape=(50,20))
layer = layers.Dense(123, activation = 'relu')
layer = layers.LSTM(128, return_sequences = True)(layer)
outputs = layers.Dense(20, activation='softmax')(layer)
output = CTCLayer()(labels,outputs)
model = Model(input_layer,outputs)
然而,当涉及到 model.fit 部分时,由于我不知道如何为模型提供“标签”输入层的东西,它开始分崩离析。我认为本教程中的方法非常明确,那么实现 CTC 损失的更好、更有效的方法是什么?