0

我有一个tableA具有以下格式的配置单元表:

> desc tableA;
+--------------------------+-----------------------+-----------------------+--+
|         col_name         |       data_type       |        comment        |
+--------------------------+-----------------------+-----------------------+--+
| statementid              | string                |                       |
| batchid                  | string                |                       |
| requestparam             | map<string,string>    |                       |
+--------------------------+-----------------------+-----------------------+--+

我尝试使用以下代码加载数据库:

val tempdf= spark.read.format("jdbc")
  .option("driver", "org.apache.hive.jdbc.HiveDriver")
  .option("url", "jdbc:hive2://localhost:10000/tempdb")
  .option("user","user1")
  .option("password","password1")
  .option("query","select statementid, batchid, requestparam from tempdb.tableA")
  .load()

我的第二次尝试:

val tempdf = spark.read.format("jdbc")
  .option("driver", "org.apache.hive.jdbc.HiveDriver")
  .option("url", "jdbc:hive2://localhost:10000/tempdb")
  .option("user","user1")
  .option("password","password1")
  .option("dbtable","tempdb.tableA")
  .load()

但是map<string,string>在将源配置单元表加载到 spark 数据集中时,列会导致问题。

线程“主”java.sql.SQLException 中的异常:org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.getCatalystType(JdbcUtils.scala:247) 中的 org.apache.spark.sql 中不支持类型 JAVA_OBJECT。 execution.datasources.jdbc.JdbcUtils$.$anonfun$getSchema$1(JdbcUtils.scala:312) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils $.getSchema(JdbcUtils.scala:312) 在 org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD$.resolveTable(JDBCRDD.scala:63) 在 org.apache.spark.sql.execution.datasources.jdbc .JDBCRelation$.getSchema(JDBCRelation.scala:226) 在 org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider.createRelation(JdbcRelationProvider.scala:35) 在 org.apache.spark.sql.execution.datasources。 DataSource.resolveRelation(DataSource.scala:354) 在 org.apache.spark。sql.DataFrameReader.loadV1Source(DataFrameReader.scala:326) at org.apache.spark.sql.DataFrameReader.$anonfun$load$3(DataFrameReader.scala:308) at scala.Option.getOrElse(Option.scala:189) at org .apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:308) 在 org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:226)

4

0 回答 0