0

我需要帮助才能将一些列添加到 treedata 对象列表的列表中,如下所示:。(你可以在帖子末尾找到数据)

[上下文]

> The_dataframe
[[1]]
[[1]][[1]]
'treedata' S4 object'.

...@ phylo:

Phylogenetic tree with 15 tips and 19 internal nodes.

Tip labels:
  Ailuropoda_melanoleuca, Agriarctos_spp, Indarctos_arctoides, Indarctos_vireti, Ursus_americanus, Ursus_thibetanus, ...
Node labels:
  , , , Ursavus_brevirhinus, Ursavus_primaevus, Kretzoiarctos_beatrix, ...

Rooted; includes branch lengths.

with the following features available:
    'age_0.95_HPD', 'index',    'posterior',    'sampled_ancestor'.

# The associated data tibble abstraction: 34 × 7
# The 'node', 'label' and 'isTip' are from the phylo tree.
    node label                  isTip age_0.95_HPD index posterior sampled_ancestor
   <int> <chr>                  <lgl> <list>       <chr>     <dbl>            <dbl>
 1     1 Ailuropoda_melanoleuca TRUE  <dbl [1]>    10           NA           NA    
 2     2 Agriarctos_spp         TRUE  <dbl [2]>    19           NA            0.265
 3     3 Indarctos_arctoides    TRUE  <dbl [2]>    7            NA            0.352
 4     4 Indarctos_vireti       TRUE  <dbl [2]>    4            NA            0.138
 5     5 Ursus_americanus       TRUE  <dbl [1]>    15           NA           NA    
 6     6 Ursus_thibetanus       TRUE  <dbl [1]>    18           NA           NA    
 7     7 Helarctos_malayanus    TRUE  <dbl [1]>    13           NA           NA    
 8     8 Ursus_arctos           TRUE  <dbl [1]>    16           NA           NA    
 9     9 Ursus_maritimus        TRUE  <dbl [1]>    12           NA           NA    
10    10 Ursus_spelaeus         TRUE  <dbl [2]>    14           NA           NA    
# … with 24 more rows

如您所见,示例数据只有一张表可供访问as_tibble(The_dataframe[[1]][[1]])

# A tibble: 34 × 8
   parent  node branch.length label                  age_0.95_HPD index posterior sampled_ancestor
    <int> <int>         <dbl> <chr>                  <list>       <chr>     <dbl>            <dbl>
 1     24     1          7.80 Ailuropoda_melanoleuca <dbl [1]>    10           NA           NA    
 2     23     2          2.56 Agriarctos_spp         <dbl [2]>    19           NA            0.265
 3     26     3          1.88 Indarctos_arctoides    <dbl [2]>    7            NA            0.352
 4     25     4          1.61 Indarctos_vireti       <dbl [2]>    4            NA            0.138
 5     31     5          2.83 Ursus_americanus       <dbl [1]>    15           NA           NA    
 6     31     6          2.83 Ursus_thibetanus       <dbl [1]>    18           NA           NA    
 7     30     7          3.57 Helarctos_malayanus    <dbl [1]>    13           NA           NA    
 8     33     8          1.50 Ursus_arctos           <dbl [1]>    16           NA           NA    
 9     33     9          1.50 Ursus_maritimus        <dbl [1]>    12           NA           NA    
10     32    10          2.97 Ursus_spelaeus         <dbl [2]>    14           NA           NA    
# … with 24 more rows

[问题]

  • 是否有人有代码的想法,以便添加一个新列,例如 Newcol 填充 30,但当然要保留 treedata 类的列表?到目前为止我试过 as_tibble(The_dataframe[[1]][[1]])$"new_col"<-30

但我收到错误消息:

Error in as_tibble(The_dataframe[[1]][[1]])$Newcol <- 30 : 
  unable to find the "as_tibble<-" function

[预期行为]

通过点击The_dataframe我应该得到以下输出:

> The_dataframe
[[1]]
[[1]][[1]]
'treedata' S4 object'.

...@ phylo:

Phylogenetic tree with 15 tips and 19 internal nodes.

Tip labels:
  Ailuropoda_melanoleuca, Agriarctos_spp, Indarctos_arctoides, Indarctos_vireti, Ursus_americanus, Ursus_thibetanus, ...
Node labels:
  , , , Ursavus_brevirhinus, Ursavus_primaevus, Kretzoiarctos_beatrix, ...

Rooted; includes branch lengths.

with the following features available:
    'age_0.95_HPD', 'index',    'posterior',    'sampled_ancestor'.

# The associated data tibble abstraction: 34 × 7
# The 'node', 'label' and 'isTip' are from the phylo tree.
    node label                  isTip age_0.95_HPD index posterior sampled_ancestor Newcol
   <int> <chr>                  <lgl> <list>       <chr>     <dbl>            <dbl> <dbl>
 1     1 Ailuropoda_melanoleuca TRUE  <dbl [1]>    10           NA           NA     30
 2     2 Agriarctos_spp         TRUE  <dbl [2]>    19           NA            0.265 30
 3     3 Indarctos_arctoides    TRUE  <dbl [2]>    7            NA            0.352 30
 4     4 Indarctos_vireti       TRUE  <dbl [2]>    4            NA            0.138 30
 5     5 Ursus_americanus       TRUE  <dbl [1]>    15           NA           NA     30
 6     6 Ursus_thibetanus       TRUE  <dbl [1]>    18           NA           NA     30
 7     7 Helarctos_malayanus    TRUE  <dbl [1]>    13           NA           NA     30
 8     8 Ursus_arctos           TRUE  <dbl [1]>    16           NA           NA     30
 9     9 Ursus_maritimus        TRUE  <dbl [1]>    12           NA           NA     30
10    10 Ursus_spelaeus         TRUE  <dbl [2]>    14           NA           NA     30
# … with 24 more rows

[输出数据]

The_dataframe <- list(list(new("treedata", file = "", treetext = "(((((((((Ailuropoda_melanoleuca[&index=10]:7.801817)Ailurarctos_lufengensis[&index=21,posterior=0.256991,age_95%_HPD={6.64001,8.1982},sampled_ancestor=0.467377]:1.366333,Agriarctos_spp[&index=19,sampled_ancestor=0.264980,age_95%_HPD={5.13563,7.7489}]:2.559428)[&index=22,posterior=0.328895,age_95%_HPD={7.75754,10.9303}]:1.473766,((Indarctos_arctoides[&index=7,sampled_ancestor=0.351531,age_95%_HPD={5.0131,9.69924}]:1.875503)Indarctos_punjabiensis[&index=23,posterior=0.154461,age_95%_HPD={7.28854,9.69991},sampled_ancestor=0.528628]:0.808470,Indarctos_vireti[&index=4,sampled_ancestor=0.138482,age_95%_HPD={7.85346,8.69269}]:1.606633)[&index=24,posterior=0.312916,age_95%_HPD={8.72817,10.9523}]:0.717725)[&index=25,posterior=0.591212,age_95%_HPD={9.44492,11.7607}]:1.038375)Kretzoiarctos_beatrix[&index=26,posterior=0.535286,age_95%_HPD={11.3942,11.7999},sampled_ancestor=0.909454]:4.177918)Ursavus_primaevus[&index=27,posterior=0.420772,age_95%_HPD={15.5618,15.97},sampled_ancestor=0.569907]:0.883936)Ursavus_brevirhinus[&index=28,posterior=0.354194,age_95%_HPD={16.2798,16.8996},sampled_ancestor=0.842876]:3.765166,(((((Ursus_americanus[&index=15]:2.829507,Ursus_thibetanus[&index=18]:2.829507)[&index=29,posterior=0.758988,age_95%_HPD={1.22039,4.36821}]:0.737650,Helarctos_malayanus[&index=13]:3.567157)[&index=30,posterior=0.993342,age_95%_HPD={1.85239,5.83876}]:0.941132,((Ursus_arctos[&index=16]:1.503686,Ursus_maritimus[&index=12]:1.503686)[&index=31,posterior=1.000000,age_95%_HPD={0.513308,2.69051}]:1.642701,Ursus_spelaeus[&index=14,age_95%_HPD={0.06962,0.245158}]:2.972521)[&index=32,posterior=0.986684,age_95%_HPD={1.22187,5.83336}]:1.361901)[&index=33,posterior=0.965379,age_95%_HPD={2.39173,7.55755}]:2.506113,Melursus_ursinus[&index=17]:7.014401)[&index=34,posterior=1.000000,age_95%_HPD={4.41289,11.1142}]:4.086867,(Arctodus_simus[&index=6,sampled_ancestor=0.003995,age_95%_HPD={0.670375,2.58573}]:3.401332,Tremarctos_ornatus[&index=9]:5.247488)[&index=35,posterior=0.994674,age_95%_HPD={1.73983,9.46342}]:5.853780)[&index=36,posterior=1.000000,age_95%_HPD={5.75446,17.6826}]:9.406043)[&index=37,posterior=0.399467,age_95%_HPD={16.7729,27.5404}]:5.439961,Ballusia_elmensis[&index=11,sampled_ancestor=0.487350,age_95%_HPD={14.4635,22.7975}]:6.045218)[&index=38,posterior=0.403462,age_95%_HPD={19.7677,34.694}]:6.089001,Zaragocyon_daamsi[&index=2,sampled_ancestor=0.017310,age_95%_HPD={20.2921,22.7797}]:10.366901)[&index=39,posterior=0.997337,age_95%_HPD={24.7003,41.1459}]:0.000000;", 
    phylo = structure(list(edge = structure(c(16L, 17L, 18L, 
    19L, 20L, 21L, 22L, 23L, 24L, 23L, 22L, 25L, 26L, 25L, 18L, 
    27L, 28L, 29L, 30L, 31L, 31L, 30L, 29L, 32L, 33L, 33L, 32L, 
    28L, 27L, 34L, 34L, 17L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 
    23L, 24L, 1L, 2L, 25L, 26L, 3L, 4L, 27L, 28L, 29L, 30L, 31L, 
    5L, 6L, 7L, 32L, 33L, 8L, 9L, 10L, 11L, 34L, 12L, 13L, 14L, 
    15L), .Dim = c(33L, 2L)), edge.length = c(6.089001, 5.439961, 
    3.765166, 0.883936, 4.177918, 1.038375, 1.473766, 1.366333, 
    7.801817, 2.559428, 0.717725, 0.80847, 1.875503, 1.606633, 
    9.406043, 4.086867, 2.506113, 0.941132, 0.73765, 2.829507, 
    2.829507, 3.567157, 1.361901, 1.642701, 1.503686, 1.503686, 
    2.972521, 7.014401, 5.85378, 3.401332, 5.247488, 6.045218, 
    10.366901), Nnode = 19L, node.label = c("", "", "", "Ursavus_brevirhinus", 
    "Ursavus_primaevus", "Kretzoiarctos_beatrix", "", "", "Ailurarctos_lufengensis", 
    "", "Indarctos_punjabiensis", "", "", "", "", "", "", "", 
    ""), tip.label = c("Ailuropoda_melanoleuca", "Agriarctos_spp", 
    "Indarctos_arctoides", "Indarctos_vireti", "Ursus_americanus", 
    "Ursus_thibetanus", "Helarctos_malayanus", "Ursus_arctos", 
    "Ursus_maritimus", "Ursus_spelaeus", "Melursus_ursinus", 
    "Arctodus_simus", "Tremarctos_ornatus", "Ballusia_elmensis", 
    "Zaragocyon_daamsi"), root.edge = 0), class = "phylo", order = "cladewise"), 
    data = structure(list(age_0.95_HPD = list(NA_real_, c(6.64001, 
    8.1982), c(5.13563, 7.7489), c(7.75754, 10.9303), c(5.0131, 
    9.69924), c(7.28854, 9.69991), c(7.85346, 8.69269), c(8.72817, 
    10.9523), c(9.44492, 11.7607), c(11.3942, 11.7999), c(15.5618, 
    15.97), c(16.2798, 16.8996), NA_real_, NA_real_, c(1.22039, 
    4.36821), NA_real_, c(1.85239, 5.83876), NA_real_, NA_real_, 
        c(0.513308, 2.69051), c(0.06962, 0.245158), c(1.22187, 
        5.83336), c(2.39173, 7.55755), NA_real_, c(4.41289, 11.1142
        ), c(0.670375, 2.58573), NA_real_, c(1.73983, 9.46342
        ), c(5.75446, 17.6826), c(16.7729, 27.5404), c(14.4635, 
        22.7975), c(19.7677, 34.694), c(20.2921, 22.7797), c(24.7003, 
        41.1459)), index = c("10", "21", "19", "22", "7", "23", 
    "4", "24", "25", "26", "27", "28", "15", "18", "29", "13", 
    "30", "16", "12", "31", "14", "32", "33", "17", "34", "6", 
    "9", "35", "36", "37", "11", "38", "2", "39"), posterior = c(posterior1 = NA, 
    posterior2 = 0.256991, posterior3 = NA, posterior4 = 0.328895, 
    posterior5 = NA, posterior6 = 0.154461, posterior7 = NA, 
    posterior8 = 0.312916, posterior9 = 0.591212, posterior10 = 0.535286, 
    posterior11 = 0.420772, posterior12 = 0.354194, posterior13 = NA, 
    posterior14 = NA, posterior15 = 0.758988, posterior16 = NA, 
    posterior17 = 0.993342, posterior18 = NA, posterior19 = NA, 
    posterior20 = 1, posterior21 = NA, posterior22 = 0.986684, 
    posterior23 = 0.965379, posterior24 = NA, posterior25 = 1, 
    posterior26 = NA, posterior27 = NA, posterior28 = 0.994674, 
    posterior29 = 1, posterior30 = 0.399467, posterior31 = NA, 
    posterior32 = 0.403462, posterior33 = NA, posterior34 = 0.997337
    ), sampled_ancestor = c(sampled_ancestor1 = NA, sampled_ancestor2 = 0.467377, 
    sampled_ancestor3 = 0.26498, sampled_ancestor4 = NA, sampled_ancestor5 = 0.351531, 
    sampled_ancestor6 = 0.528628, sampled_ancestor7 = 0.138482, 
    sampled_ancestor8 = NA, sampled_ancestor9 = NA, sampled_ancestor10 = 0.909454, 
    sampled_ancestor11 = 0.569907, sampled_ancestor12 = 0.842876, 
    sampled_ancestor13 = NA, sampled_ancestor14 = NA, sampled_ancestor15 = NA, 
    sampled_ancestor16 = NA, sampled_ancestor17 = NA, sampled_ancestor18 = NA, 
    sampled_ancestor19 = NA, sampled_ancestor20 = NA, sampled_ancestor21 = NA, 
    sampled_ancestor22 = NA, sampled_ancestor23 = NA, sampled_ancestor24 = NA, 
    sampled_ancestor25 = NA, sampled_ancestor26 = 0.003995, sampled_ancestor27 = NA, 
    sampled_ancestor28 = NA, sampled_ancestor29 = NA, sampled_ancestor30 = NA, 
    sampled_ancestor31 = 0.48735, sampled_ancestor32 = NA, sampled_ancestor33 = 0.01731, 
    sampled_ancestor34 = NA), node = c("1", "24", "2", "23", 
    "3", "26", "4", "25", "22", "21", "20", "19", "5", "6", "31", 
    "7", "30", "8", "9", "33", "10", "32", "29", "11", "28", 
    "12", "13", "34", "27", "18", "14", "17", "15", "16")), row.names = c(NA, 
    -34L), class = c("tbl_df", "tbl", "data.frame")), extraInfo = structure(list(), class = c("tbl_df", 
    "tbl", "data.frame"), row.names = integer(0), .Names = character(0)), 
    tip_seq = NULL, anc_seq = NULL, seq_type = character(0), 
    tipseq_file = character(0), ancseq_file = character(0), info = list())))
4

1 回答 1

1

我认为问题与列表结构无关,而是与小标题有关。在此处查看tibbles (dpylr) 备忘单

library(tidytree) # needed for class "treedata"

The_dataframe[[1]][[1]]@data <- The_dataframe[[1]][[1]]@data %>% mutate(newcol = 30)

这有帮助吗?

于 2021-09-19T11:22:33.893 回答