如何在objective
Optuna 的功能内同时优化多个指标。例如,我正在训练一个 LGBM 分类器,并希望为所有常见分类指标(如 F1、精度、召回率、准确率、AUC 等)找到最佳超参数集。
def objective(trial):
# Train
gbm = lgb.train(param, dtrain)
preds = gbm.predict(X_test)
pred_labels = np.rint(preds)
# Calculate metrics
accuracy = sklearn.metrics.accuracy_score(y_test, pred_labels)
recall = metrics.recall_score(pred_labels, y_test)
precision = metrics.precision_score(pred_labels, y_test)
f1 = metrics.f1_score(pred_labels, y_test, pos_label=1)
...
我该怎么做?