-2
$ xidel -s -e '//PubmedArticle/join((MedlineCitation/PMID, normalize-space(outer-xml())), x:cps(9))' 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&retmode=xml&id=22259814,26978846'
26978846    <PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM"><PMID Version="1">26978846</PMID><DateCompleted><Year>2016</Year><Month>12</Month><Day>13</Day></DateCompleted><DateRevised><Year>2016</Year><Month>12</Month><Day>30</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">2154-2317</ISSN><JournalIssue CitedMedium="Internet"><Volume>7</Volume><Issue>2</Issue><PubDate><MedlineDate>2016 Mar-Apr</MedlineDate></PubDate></JournalIssue><Title>IEEE pulse</Title><ISOAbbreviation>IEEE Pulse</ISOAbbreviation></Journal><ArticleTitle>The CRISPR Conundrum: As Millions of Dollars Flow into Developing the Gene-Editing Tool, Scientists Continue to Discover the Technology&apos;s Potential and Pitfalls.</ArticleTitle><Pagination><MedlinePgn>17-21</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1109/MPUL.2016.2514899</ELocationID><Abstract><AbstractText>We are in the midst of a CRISPR craze. The last five years have seen the publication of over 1,000 scientific papers, the allocation of millions of research dollars, and the establishment of four start-up companies in the United States alone. Internationally, the genome-editing market, fueled by CRISPR technology, is expected to be worth more than US$3,000 million by 2019. </AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Bates</LastName><ForeName>Mary</ForeName><Initials>M</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>IEEE Pulse</MedlineTA><NlmUniqueID>101541727</NlmUniqueID><ISSNLinking>2154-2287</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D064113" MajorTopicYN="Y">CRISPR-Cas Systems</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005818" MajorTopicYN="N">Genetic Engineering</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName><QualifierName UI="Q000639" MajorTopicYN="Y">trends</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2016</Year><Month>3</Month><Day>16</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2016</Year><Month>3</Month><Day>16</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2016</Year><Month>12</Month><Day>15</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">26978846</ArticleId><ArticleId IdType="doi">10.1109/MPUL.2016.2514899</ArticleId></ArticleIdList></PubmedData></PubmedArticle>
$ xidel -s -e '//BookDocument/join((PMID, normalize-space(outer-xml())), x:cps(9))' 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&retmode=xml&id=22259814,26978846'
22259814    <BookDocument><PMID Version="1">22259814</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK83299</ArticleId></ArticleIdList><Book><Publisher><PublisherName>National Center for Biotechnology Information (US)</PublisherName><PublisherLocation>Bethesda (MD)</PublisherLocation></Publisher><BookTitle book="micad">Molecular Imaging and Contrast Agent Database (MICAD)</BookTitle><PubDate><Year>2004</Year></PubDate><BeginningDate><Year>2004</Year></BeginningDate><EndingDate><Year>2013</Year></EndingDate><Medium>Internet</Medium></Book><ArticleTitle book="micad" part="TRC105-DOTA-64Cu"><sup>64</sup>Cu-1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid-anti-CD105 TRC105 chimeric monoclonal antibody</ArticleTitle><Language>eng</Language><AuthorList Type="authors"><Author><LastName>Leung</LastName><ForeName>Kam</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>National for Biotechnology Information, NLM, NIH, Bethesda, MD</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D016454">Review</PublicationType><Abstract><AbstractText>Angiogenesis is an essential process in the development of new blood vessels both in normal physiological states and diseases (1, 2). Targeting of tumor vasculature is a promising strategy for tumor imaging and therapy because tumor growth and metastasis largely depend on angiogenesis (3-5). Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that modulates blood vessel development, angiogenesis, and tumor progression (6). There are three isoforms of TGF-β (β<sub>1</sub>, β<sub>2</sub>, and β<sub>3</sub>). TGF-β<sub>1</sub> inhibits proliferation and migration of endothelial cells and their ability to form capillaries. CD105 (endoglin, EDG) is a homodimeric transmembrane glycoprotein (180 kDa) with disulfide-linked subunits of 95 kDa. CD105 is a component of the TGF-β receptor complex that specifically binds TGF-β<sub>1</sub> and TGF-β<sub>3</sub> with high affinity (7). CD105 is important for blood vessel development. The expression of CD105 on different cells affects cellular response to TGF-β<sub>1</sub>. CD105 is overexpressed in proliferating endothelial cells of tumor vessels, and CD105 prevents TGF-β<sub>1</sub>-mediated inhibition of endothelial cell proliferation (8, 9). Radiolabeled monoclonal antibodies (mAbs) have been developed for both the diagnosis and treatment of tumors (10-12). Quiescent human endothelial cells express CD105 only weakly, but the expression of CD105 is strongly upregulated on the endothelium of tumor tissues undergoing angiogenesis (9, 13). The high level of expressed CD105 (up to 10<sup>6</sup> molecules/proliferating cell) appears to be ideal for <i>in vivo</i> imaging and therapy. Anti-CD105 mAbs, such as MAEND3, E9, and MJ7/18 with radionuclides (e.g., <sup>111</sup>In, <sup>99m</sup>Tc, and <sup>125</sup>I) have been studied as single-photon emission computed tomography (SPECT) probes for imaging CD105 expression (9, 14). TRC105 is a human/murine chimeric IgG<sub>1</sub> mAb that bind with higher affinity to human CD105 than to murine CD105 (15). TRC105 inhibits angiogenesis and tumor growth and is now in clinical trials in cancer patients. Hong et al. (16) showed that <sup>64</sup>Cu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-anti-CD105 TRC105 (<sup>64</sup>Cu-DOTA-TRC105) mAbs could efficiently image 4T1 murine breast tumor in mice with positron emission tomography (PET) imaging.</AbstractText></Abstract><Sections><Section><SectionTitle book="micad" part="TRC105-DOTA-64Cu" sec="TRC105-DOTA-64Cu.Background">Background</SectionTitle></Section><Section><SectionTitle book="micad" part="TRC105-DOTA-64Cu" sec="TRC105-DOTA-64Cu.Synthesis">Synthesis</SectionTitle></Section><Section><SectionTitle book="micad" part="TRC105-DOTA-64Cu" sec="TRC105-DOTA-64Cu.In_Vitro_Studies_Testin"><i>In Vitro</i> Studies: Testing in Cells and Tissues</SectionTitle></Section><Section><SectionTitle book="micad" part="TRC105-DOTA-64Cu" sec="TRC105-DOTA-64Cu.Animal_Studies">Animal Studies</SectionTitle></Section><Section><SectionTitle book="micad" part="TRC105-DOTA-64Cu" sec="TRC105-DOTA-64Cu.Human_Studies">Human Studies</SectionTitle></Section><Section><SectionTitle book="micad" part="TRC105-DOTA-64Cu" sec="TRC105-DOTA-64Cu.References">References</SectionTitle></Section></Sections><KeywordList><Keyword>64Cu-DOTA-TRC105</Keyword><Keyword>Antibody</Keyword><Keyword>CD105 (Endoglin, EDG)</Keyword><Keyword>Antigen</Keyword><Keyword>Positron emission tomography (PET)</Keyword><Keyword>64Cu</Keyword></KeywordList><ContributionDate><Year>2011</Year><Month>10</Month><Day>27</Day></ContributionDate><DateRevised><Year>2012</Year><Month>01</Month><Day>12</Day></DateRevised></BookDocument>

我可以像上面那样请求每种类型的节点。我想要一个表达式来提取两种类型的节点。

但我收到以下错误。请让我知道OR在这种情况下在 xpath 中执行的最佳方法是什么?

$ xidel -s -e '//PubmedArticle/join((MedlineCitation/PMID, outer-xml()), x:cps(9)) | //BookDocument/join((PMID, outer-xml()), x:cps(9))' 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&retmode=xml&id=22259814,26978846'
Error:
err:XPTY0004: invalid type for union
Possible backtrace:
  $00000001000C7BE3: TXQTermBinaryOp + 1619
  $0000000100042EC4: perhaps ? ? but unlikely

Call xidel with --trace-stack to get an actual backtrace
4

1 回答 1

0

|仅适用于节点

join(like string-join) 返回一个字符串而不是一个节点。

,是联合任何东西的运算符:

 xidel -s -e '//PubmedArticle/join((MedlineCitation/PMID, outer-xml()), x:cps(9)), //BookDocument/join((PMID, outer-xml()), x:cps(9))' 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&retmode=xml&id=22259814,26978846'
于 2021-08-24T22:41:38.857 回答