0

plsplm我在包装中遇到了问题。我试图画出SEM情节。除非我考虑扩展与路径系数值相对应的箭头线宽,否则一切都很好。

1.剧情没问题

plot(foot_pls)

2.不同箭头线的情节有问题

Paths = foot_pls$path_coefs
arrow_lwd = 10 * round(Paths, 10)
plot(foot_pls,
     arr.lwd = arrow_lwd
     )

负路径系数缺少箭头线。

我想知道如何解决它。非常感谢我的朋友!

这是我的数据。

foot_pls = 
structure(list(outer_model = structure(list(name = structure(1:12, .Label = c("GSH", 
"GSA", "SSH", "SSA", "GCH", "GCA", "CSH", "CSA", "WMH", "WMA", 
"LWR", "LRWL"), class = "factor"), block = structure(c(1L, 1L, 
1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L), .Label = c("Attack", 
"Defense", "Success"), class = "factor"), weight = c(0.33662204082658, 
0.28194924271979, 0.289247962713028, 0.239608224213461, -0.108738019088761, 
-0.391462510931376, 0.327374123705746, 0.403513843369816, 0.230895464905787, 
0.302955257887875, 0.282140842579525, 0.295771765233262), loading = c(0.93794554085203, 
0.862099711852566, 0.840829453304524, 0.826308409241376, 0.483656080510281, 
0.875900737221843, -0.746373562221797, -0.892614984576805, 0.775507003283975, 
0.886366202903342, 0.968618731508113, 0.943709901076032), communality = c(0.879741837604208, 
0.743215913176278, 0.706994169544384, 0.682785587183013, 0.233923204214567, 
0.767202101465768, 0.557073494383654, 0.79676151069105, 0.601411112142491, 
0.785645045649289, 0.938222247028386, 0.890588377388934), redundancy = c(0, 
0, 0, 0, 0, 0, 0, 0, 0.514545501203708, 0.672169362387912, 0.802708873499017, 
0.761955064942688)), class = "data.frame", row.names = c(NA, 
12L)), inner_model = list(Success = structure(c(-1.9977685182774e-16, 
0.757260989301597, -0.283606768661185, 0.0921751290763975, 0.104399938521697, 
0.104399938521697, -2.16736178001073e-15, 7.25346202329627, -2.7165415294018, 
0.999999999999998, 0.0000013488691774015, 0.0146596313190438), .Dim = 3:4, .Dimnames = list(
    c("Intercept", "Attack", "Defense"), c("Estimate", "Std. Error", 
    "t value", "Pr(>|t|)")))), path_coefs = structure(c(0, 0, 
0.757260989301597, 0, 0, -0.283606768661185, 0, 0, 0), .Dim = c(3L, 
3L), .Dimnames = list(c("Attack", "Defense", "Success"), c("Attack", 
"Defense", "Success"))), scores = structure(c(2.61156440950801, 
1.77310194381628, -0.112319767263935, 1.53339962139735, 0.280136140713425, 
0.89913295879868, -0.293943664584036, -0.0543370838992483, -0.123067488034842, 
-0.5943758811517, -0.625966181882948, -0.164113869373854, -0.220289097542346, 
-0.352838881722103, -1.01542834569902, -0.761451315459533, 0.418805986228276, 
-0.485330271137402, -1.48722138089895, -1.2254578318121, -1.74308967898361, 
-1.13283764692724, -2.24651002327012, 0.0239176092302997, 0.167610004679681, 
-0.195753780260044, -1.0550141094653, 0.500922630863788, 0.489540821788465, 
-0.709480591052711, 1.23667782083709, -0.42352553108409, 0.637899547296723, 
1.63837325091382, -0.815401907235516, 0.465508541287504, 0.672635622299675, 
0.549207665802086, 1.23562853072969, 0.703691222549805, 2.78914319782557, 
2.32459108316259, 0.554098978358746, 0.777070734836764, 0.608421720666617, 
0.412099092892524, -0.115055580031772, -0.0550954130868508, -0.230865875947374, 
-0.359278329533128, -0.57165768745133, -0.465784324595261, -0.551934081090802, 
-0.287371470418339, -0.477557923712371, -0.745787410601254, -0.960809159835855, 
-0.528755902256317, -1.13476578993302, -0.980705859249141), .Dim = c(20L, 
3L), .Dimnames = list(c("Barcelona", "RealMadrid", "Sevilla", 
"AtleMadrid", "Villarreal", "Valencia", "Depor", "Malaga", "Mallorca", 
"Espanyol", "Almeria", "RacingStder", "AthleticBil", "Sporting", 
"Osasuna", "Valladolid", "Getafe", "Betis", "Numancia", "Recreativo"
), c("Attack", "Defense", "Success"))), crossloadings = structure(list(
    name = structure(1:12, .Label = c("GSH", "GSA", "SSH", "SSA", 
    "GCH", "GCA", "CSH", "CSA", "WMH", "WMA", "LWR", "LRWL"), class = "factor"), 
    block = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 
    3L, 3L), .Label = c("Attack", "Defense", "Success"), class = "factor"), 
    Attack = c(0.93794554085203, 0.862099711852566, 0.840829453304524, 
    0.826308409241376, -0.130517114802252, -0.462156023663607, 
    0.318807613902357, 0.421485274318287, 0.708582569819309, 
    0.773052446426377, 0.844401209078385, 0.860057240741984), 
    Defense = c(-0.515944618195105, -0.339074615707495, -0.413927712958269, 
    -0.336155101972595, 0.483656080510281, 0.875900737221843, 
    -0.746373562221797, -0.892614984576805, -0.422614391281511, 
    -0.711474677262341, -0.538014895187574, -0.5891723694685), 
    Success = c(0.897725574435835, 0.751920395077754, 0.771385411286494, 
    0.63900253393163, -0.159754274212004, -0.575123166953811, 
    0.480967057584487, 0.592828674524146, 0.775507003283975, 
    0.886366202903342, 0.968618731508113, 0.943709901076032)), class = "data.frame", row.names = c(NA, 
12L)), inner_summary = structure(list(Type = c("Exogenous", "Exogenous", 
"Endogenous"), R2 = c(0, 0, 0.855563674855741), Block_Communality = c(0.753184376876971, 
0.58874007768876, 0.803966695552275), Mean_Redundancy = c(0, 
0, 0.687844700508331), AVE = c(0.753184376876971, 0.58874007768876, 
0.803966695552275)), class = "data.frame", row.names = c("Attack", 
"Defense", "Success")), effects = structure(list(relationships = c("Attack -> Defense", 
"Attack -> Success", "Defense -> Success"), direct = c(0, 0.757260989301597, 
-0.283606768661185), indirect = c(0, 0, 0), total = c(0, 0.757260989301597, 
-0.283606768661185)), class = "data.frame", row.names = c(NA, 
-3L)), unidim = structure(list(Mode = c("A", "A", "A"), MVs = c(4L, 
4L, 4L), C.alpha = c(0.890591933756613, 0, 0.916549123730929), 
    DG.rho = c(0.924560785901021, 0.026016774362349, 0.942328681420237
    ), eig.1st = c(3.01716034792236, 2.393442148156, 3.21729381484532
    ), eig.2nd = c(0.792305513326378, 1.17527813617388, 0.537049198525498
    )), class = "data.frame", row.names = c("Attack", "Defense", 
"Success")), gof = 0.782292894474393, boot = FALSE, data = structure(list(
    GSH = c(61L, 49L, 28L, 47L, 33L, 47L, 30L, 28L, 33L, 28L, 
    27L, 28L, 28L, 24L, 27L, 22L, 27L, 24L, 23L, 17L), GSA = c(44L, 
    34L, 26L, 33L, 28L, 21L, 18L, 27L, 20L, 18L, 18L, 21L, 19L, 
    23L, 14L, 24L, 33L, 27L, 15L, 17L), SSH = c(0.95, 1, 0.74, 
    0.95, 0.84, 1, 0.84, 0.79, 0.84, 0.79, 0.79, 0.79, 0.84, 
    0.74, 0.74, 0.68, 0.74, 0.68, 0.68, 0.63), SSA = c(0.95, 
    0.84, 0.74, 0.84, 0.68, 0.68, 0.63, 0.68, 0.63, 0.58, 0.58, 
    0.74, 0.68, 0.74, 0.53, 0.63, 0.89, 0.68, 0.42, 0.68), GCH = c(14L, 
    29L, 20L, 23L, 25L, 26L, 18L, 23L, 24L, 22L, 20L, 22L, 29L, 
    37L, 22L, 17L, 23L, 25L, 22L, 29L), GCA = c(21L, 23L, 19L, 
    34L, 29L, 28L, 29L, 36L, 36L, 27L, 41L, 26L, 33L, 42L, 25L, 
    41L, 33L, 33L, 47L, 28L), CSH = c(0.47, 0.37, 0.42, 0.37, 
    0.26, 0.26, 0.42, 0.26, 0.27, 0.42, 0.21, 0.21, 0.26, 0.11, 
    0.37, 0.42, 0.21, 0.26, 0.32, 0.16), CSA = c(0.32, 0.37, 
    0.53, 0.16, 0.16, 0.26, 0.32, 0.16, 0.16, 0.21, 0.05, 0.32, 
    0.11, 0.16, 0.26, 0.05, 0.11, 0.11, 0.05, 0.11), WMH = c(14L, 
    14L, 11L, 13L, 12L, 12L, 10L, 8L, 9L, 8L, 11L, 5L, 9L, 8L, 
    8L, 8L, 7L, 4L, 9L, 4L), WMA = c(13L, 11L, 10L, 7L, 6L, 6L, 
    6L, 7L, 5L, 4L, 2L, 7L, 3L, 6L, 4L, 2L, 3L, 6L, 1L, 4L), 
    LWR = c(10L, 10L, 4L, 6L, 5L, 5L, 3L, 4L, 3L, 4L, 3L, 2L, 
    2L, 4L, 3L, 3L, 1L, 3L, 1L, 2L), LRWL = c(22L, 18L, 7L, 9L, 
    11L, 8L, 6L, 6L, 7L, 6L, 4L, 7L, 7L, 4L, 6L, 5L, 5L, 7L, 
    3L, 5L)), class = "data.frame", row.names = c("Barcelona", 
"RealMadrid", "Sevilla", "AtleMadrid", "Villarreal", "Valencia", 
"Depor", "Malaga", "Mallorca", "Espanyol", "Almeria", "RacingStder", 
"AthleticBil", "Sporting", "Osasuna", "Valladolid", "Getafe", 
"Betis", "Numancia", "Recreativo")), manifests = structure(c(2.76373571454437, 
1.63759552525634, -0.333149805997709, 1.44990549370834, 0.136075272872303, 
1.44990549370834, -0.145459774449704, -0.333149805997709, 0.136075272872303, 
-0.333149805997709, -0.426994821771711, -0.333149805997709, -0.333149805997709, 
-0.708529869093718, -0.426994821771711, -0.896219900641723, -0.426994821771711, 
-0.708529869093718, -0.80237488486772, -1.36544497951173, 2.69925443392972, 
1.34962721696486, 0.269925443392972, 1.21466449526837, 0.539850886785944, 
-0.404888165089458, -0.809776330178916, 0.404888165089458, -0.539850886785944, 
-0.809776330178916, -0.809776330178916, -0.404888165089458, -0.67481360848243, 
-0.134962721696486, -1.34962721696486, 0, 1.21466449526837, 0.404888165089458, 
-1.21466449526837, -0.944739051875402, 1.41222705016065, 1.89094808411341, 
-0.598401292440954, 1.41222705016065, 0.359040775464572, 1.89094808411341, 
0.359040775464572, -0.11968025848819, 0.359040775464572, -0.11968025848819, 
-0.11968025848819, -0.11968025848819, 0.359040775464572, -0.598401292440954, 
-0.598401292440954, -1.17286653318427, -0.598401292440954, -1.17286653318427, 
-1.17286653318427, -1.65158756713703, 2.13554235857614, 1.22855525647817, 
0.404021527298189, 1.22855525647817, -0.0906987102097977, -0.0906987102097977, 
-0.502965574799787, -0.0906987102097977, -0.502965574799787, 
-0.915232439389777, -0.915232439389777, 0.404021527298189, -0.0906987102097977, 
0.404021527298189, -1.32749930397977, -0.502965574799787, 1.64082212106816, 
-0.0906987102097977, -2.23448640607774, -0.0906987102097977, 
-1.93716255192969, 1.12151516164351, -0.713691466500412, -0.101955923785773, 
0.30586777135732, 0.509779618928866, -1.12151516164351, -0.101955923785773, 
0.101955923785773, -0.30586777135732, -0.713691466500412, -0.30586777135732, 
1.12151516164351, 2.75280994221588, -0.30586777135732, -1.32542700921505, 
-0.101955923785773, 0.30586777135732, -0.30586777135732, 1.12151516164351, 
-1.45399724289125, -1.17835795513935, -1.72963653064314, 0.337658127496071, 
-0.351440091883666, -0.489259735759614, -0.351440091883666, 0.613297415247966, 
0.613297415247966, -0.627079379635561, 1.3023956346277, -0.764899023511508, 
0.199838483620124, 1.44021527850365, -0.902718667387456, 1.3023956346277, 
0.199838483620124, 0.199838483620124, 2.12931349788339, -0.489259735759614, 
1.71682034428481, 0.691852974562537, 1.20433665942368, 0.691852974562537, 
-0.435611132131968, -0.435611132131968, 1.20433665942368, -0.435611132131968, 
-0.33311439515974, 1.20433665942368, -0.948094816993107, -0.948094816993107, 
-0.435611132131968, -1.97306218671538, 0.691852974562537, 1.20433665942368, 
-0.948094816993107, -0.435611132131968, 0.179369289701399, -1.46057850185425, 
0.994311594673579, 1.40518415445605, 2.71997634575996, -0.320480596630327, 
-0.320480596630327, 0.501264522934614, 0.994311594673579, -0.320480596630327, 
-0.320480596630327, 0.0903919631521434, -1.22440022815176, 0.994311594673579, 
-0.731353156412798, -0.320480596630327, 0.501264522934614, -1.22440022815176, 
-0.731353156412798, -0.731353156412798, -1.22440022815176, -0.731353156412798, 
1.66011471327858, 1.66011471327858, 0.622543017479467, 1.31425748134554, 
0.968400249412505, 0.968400249412505, 0.27668578554643, -0.415028678319645, 
-0.0691714463866072, -0.415028678319645, 0.622543017479467, -1.45260037411876, 
-0.0691714463866072, -0.415028678319645, -0.415028678319645, 
-0.415028678319645, -0.760885910252682, -1.79845760605179, -0.0691714463866072, 
-1.79845760605179, 2.45992807812301, 1.79055989359974, 1.45587580133811, 
0.451823524553205, 0.117139432291572, 0.117139432291572, 0.117139432291572, 
0.451823524553205, -0.217544659970062, -0.552228752231695, -1.22159693675496, 
0.451823524553205, -0.886912844493329, 0.117139432291572, -0.552228752231695, 
-1.22159693675496, -0.886912844493329, 0.117139432291572, -1.5562810290166, 
-0.552228752231695, 2.55725302971694, 2.55725302971694, 0.0419221808150319, 
0.880365797115669, 0.46114398896535, 0.46114398896535, -0.377299627335287, 
0.0419221808150319, -0.377299627335287, 0.0419221808150319, -0.377299627335287, 
-0.796521435485605, -0.796521435485605, 0.0419221808150319, -0.377299627335287, 
-0.377299627335287, -1.21574324363592, -0.377299627335287, -1.21574324363592, 
-0.796521435485605, 3.17500410757195, 2.28998554100137, -0.143815517067719, 
0.29869376621757, 0.74120304950286, 0.0774391245749256, -0.365070158710364, 
-0.365070158710364, -0.143815517067719, -0.365070158710364, -0.807579441995653, 
-0.143815517067719, -0.143815517067719, -0.807579441995653, -0.365070158710364, 
-0.586324800353008, -0.586324800353008, -0.143815517067719, -1.0288340836383, 
-0.586324800353008), .Dim = c(20L, 12L), .Dimnames = list(c("Barcelona", 
"RealMadrid", "Sevilla", "AtleMadrid", "Villarreal", "Valencia", 
"Depor", "Malaga", "Mallorca", "Espanyol", "Almeria", "RacingStder", 
"AthleticBil", "Sporting", "Osasuna", "Valladolid", "Getafe", 
"Betis", "Numancia", "Recreativo"), c("GSH", "GSA", "SSH", "SSA", 
"GCH", "GCA", "CSH", "CSA", "WMH", "WMA", "LWR", "LRWL")), "`scaled:center`" = c(GSH = 31.55, 
GSA = 24, SSH = 0.8025, SSA = 0.691, GCH = 23.5, GCA = 31.55, 
CSH = 0.3025, CSA = 0.199, WMH = 9.2, WMA = 5.65, LWR = 3.9, 
LRWL = 7.65), "`scaled:scale`" = c(GSH = 10.6558669285985, GSA = 7.40945342113708, 
SSH = 0.104444961582644, SSA = 0.121280666225083, GCH = 4.90407993409569, 
GCA = 7.25585970095894, CSH = 0.0975640815054393, CSA = 0.121692234756372, 
WMH = 2.89136645896019, WMA = 2.98789223366573, LWR = 2.38537208837531, 
LRWL = 4.51967919215512)), model = list(IDM = structure(c(0, 
0, 1, 0, 0, 1, 0, 0, 0), .Dim = c(3L, 3L), .Dimnames = list(c("Attack", 
"Defense", "Success"), c("Attack", "Defense", "Success"))), blocks = list(
    Attack = 1:4, Defense = 5:8, Success = 9:12), specs = list(
    scaling = NULL, modes = c("A", "A", "A"), scheme = "centroid", 
    scaled = TRUE, tol = 1e-06, maxiter = 100, plscomp = NULL), 
    iter = 5, boot.val = FALSE, br = NULL, gens = list(obs = 20L, 
        obs_names = c("Barcelona", "RealMadrid", "Sevilla", "AtleMadrid", 
        "Villarreal", "Valencia", "Depor", "Malaga", "Mallorca", 
        "Espanyol", "Almeria", "RacingStder", "AthleticBil", 
        "Sporting", "Osasuna", "Valladolid", "Getafe", "Betis", 
        "Numancia", "Recreativo"), mvs = 12L, mvs_names = c("GSH", 
        "GSA", "SSH", "SSA", "GCH", "GCA", "CSH", "CSA", "WMH", 
        "WMA", "LWR", "LRWL"), lvs = 3L, lvs_names = c("Attack", 
        "Defense", "Success")))), class = "plspm")
4

0 回答 0