0

我正在尝试寻找 accuarcy/PRecision/Reacll 等...所以我使用了这段代码,它对我来说效果很好,但实际上我想将输出形式更改为表格 我的输出

    Column 2 acc: 1.0
    Column 2 p: 1.0
    Column 2 r: 1.0
    Column 1 acc: 1.0
    Column 1 p: 1.0
    Column 1 r: 1.0
    Column 3 acc: 1.0
    Column 3 p: 1.0
    Column 3 r: 1.0

我想要的输出:

+----------+-----------+-------+---------+
|  Feature | Precision |Recall | Accuracy|
+----------+-----------+-------+---------+
|    1     |    1.0   |  1.0   |  1.0    |
|    2     |    1.0   |  1.0   |  1.0    |
|    3     |    1.0   |  1.0   |  1.0    |
+----------+----------+--------+---------+

我的代码:

def calc_acc(original, predect1):
    common_columns = list(set(original.columns).intersection(predect1.columns))

    avg_a = 0.0
    avg_p = 0.0
    avg_r = 0.0
    for c in common_columns:
        c_acc = accuracy_score(original[c], predect1[c])
        p = precision_score(original[c], predect1[c], average='macro', labels=np.unique(predect1[c]))
        r = recall_score(original[c], predect1[c], average='macro', labels=np.unique(predect1[c]))
        print(f'Column {c} acc: {c_acc}')
        print(f'Column {c} p: {p}')
        print(f'Column {c} r: {r}')
        avg_a += c_acc/len(common_columns)
        avg_p += p/len(common_columns)
        avg_r += r/len(common_columns)

注意:c 是列

4

2 回答 2

2

使用此代码绘制PrettyTable

from prettytable import PrettyTable
pt = PrettyTable()
pt.field_names = ['Feature','Precision','Recall','Accuracy']
pt.add_row([c,p,r,c_acc])

最后你想要的代码和输出是这样的:

from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score, recall_score
from prettytable import PrettyTable
 

def calc_acc(original, predect1):
    common_columns = list(set(original.columns).intersection(predect1.columns))

    avg_a = 0.0
    avg_p = 0.0
    avg_r = 0.0
    
    pt = PrettyTable()
    pt.field_names = ['Feature','Precision','Recall','Accuracy']

    for c in common_columns:
        c_acc = accuracy_score(original[c], predect1[c])
        p = precision_score(original[c], predect1[c], average='macro', labels=np.unique(predect1[c]))
        r = recall_score(original[c], predect1[c], average='macro', labels=np.unique(predect1[c]))

        pt.add_row([c,p,r,c_acc])
        
        avg_a += c_acc/len(common_columns)
        avg_p += p/len(common_columns)
        avg_r += r/len(common_columns)
        
    print(pt)
        
pre = [[1, 1, 3], [2, 3, 4]]
pre = pd.DataFrame(pre, columns= ['1', '2', '3'])

calc_acc(pre, pre)

输出:

在此处输入图像描述

于 2021-08-10T11:24:06.693 回答
0

您可以使用熊猫数据框。

import pandas as pd

df = pd.DataFrame({
    "Feature": col,
    "Precision": prec,
    "Recall": rec,
    "Accuracy": acc
})

print(df)

注意col、prec、rec、acc --> 列出数据类型。从您的 for 循环创建这些列表,然后将它们转换为数据框,就是这样。

于 2021-08-10T12:03:52.413 回答