在使用 optuna 进行超参数调整后,我正在尝试将 XGBClassifier 拟合到我的数据集,但我不断收到此警告:
与目标“binary:logistic”一起使用的默认评估指标从“error”更改为“logloss”
下面是我的代码:
#XGBC MODEL
model = XGBClassifier(random_state = 69)
cross_rfc_score = -1 * cross_val_score(model, train_x1, train_y,
cv = 5, n_jobs = -1, scoring = 'neg_mean_squared_error')
base_rfc_score = cross_rfc_score.mean()
但是,如果我使用 Optuna 然后拟合获得的参数,它会给我警告。下面是代码:
def objective(trial):
learning_rate = trial.suggest_float('learning_rate', 0.001, 0.01)
n_estimators = trial.suggest_int('n_estimators', 10, 500)
sub_sample = trial.suggest_float('sub_sample', 0.0, 1.0)
max_depth = trial.suggest_int('max_depth', 1, 20)
params = {'max_depth' : max_depth,
'n_estimators' : n_estimators,
'sub_sample' : sub_sample,
'learning_rate' : learning_rate}
model.set_params(**params)
return np.mean(-1 * cross_val_score(model, train_x1, train_y,
cv = 5, n_jobs = -1, scoring = 'neg_mean_squared_error'))
xgbc_study = optuna.create_study(direction = 'minimize')
xgbc_study.optimize(objective, n_trials = 10)
xgbc_study.best_params
optuna_rfc_mse = xgbc_study.best_value
model.set_params(**xgbc_study.best_params)
model.fit(train_x1, train_y)
xgbc_optuna_pred = model.predict(test_x1)
xgbc_optuna_mse1 = mean_squared_error(test_y, xgbc_optuna_pred)
完整的警告是:
从 XGBoost 1.3.0 开始,与目标“binary:logistic”一起使用的默认评估指标从“error”更改为“logloss”。如果您想恢复旧行为,请显式设置 eval_metric。
我想MSE
作为我选择的指标。