以下代码创建了一个连接 2 个输入的虚拟模型。一个输入与输出大小为 5 的 Embedding 层一起使用,而第二个输入仅与 Embedding 层的输出合并:
import tensorflow as tf
import numpy as np
from tensorflow.keras.layers import Input, Embedding, Concatenate, Dense
from tensorflow.keras.models import Model
import keras
x = np.random.randint(0 ,50, size = (10,5,1))
y = np.random.randint(0 ,1, size = (10,1) )
def get_model():
input1 = Input( shape =(None,11), name='timeseries_input' )
input2 = Input( shape = (None,1) ,name='embedding_input')
emb = Embedding(input_dim= len(np.unique(x)) , output_dim= 5)(input2)
emb = keras.layers.Reshape( target_shape=( -1,5) )(emb)
merged = Concatenate(axis =2 )([emb,input1])
out = Dense(1)(merged)
model = Model([input1,input2],out)
model.summary()
return model
m = get_model()
tf.keras.utils.plot_model(
m,
show_shapes=True,
show_dtype=True,
show_layer_names=True,
rankdir="TB",
)
该代码有效并产生以下结构:
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
embedding_input (InputLayer) [(None, None, 1)] 0
__________________________________________________________________________________________________
embedding_17 (Embedding) (None, None, 1, 5) 155 embedding_input[0][0]
__________________________________________________________________________________________________
tf.compat.v1.shape_15 (TFOpLamb (4,) 0 embedding_17[0][0]
__________________________________________________________________________________________________
tf.__operators__.getitem_12 (Sl () 0 tf.compat.v1.shape_15[0][0]
__________________________________________________________________________________________________
tf.reshape_12 (TFOpLambda) (None, None, 5) 0 embedding_17[0][0]
tf.__operators__.getitem_12[0][0]
__________________________________________________________________________________________________
timeseries_input (InputLayer) [(None, None, 11)] 0
__________________________________________________________________________________________________
concatenate_11 (Concatenate) (None, None, 16) 0 tf.reshape_12[0][0]
timeseries_input[0][0]
__________________________________________________________________________________________________
dense_10 (Dense) (None, None, 1) 17 concatenate_11[0][0]
==================================================================================================
Total params: 172
Trainable params: 172
Non-trainable params: 0
__________________________________________________________________________________________________
但是,当添加ragged=True
到我的输入时:
input1 = Input( shape =(None,11), name='timeseries_input',ragged=True )
input2 = Input( shape = (None,1) ,name='embedding_input',ragged=True)
代码因以下错误而中断:
TypeError: Failed to convert object of type <class 'tensorflow.python.ops.ragged.ragged_tensor.RaggedTensor'> to Tensor. Contents: tf.RaggedTensor(values=Tensor("Placeholder:0", shape=(None, 1, 5), dtype=float32), row_splits=Tensor("Placeholder_1:0", shape=(None,), dtype=int64)). Consider casting elements to a supported type.
如何连接参差不齐的输入?我错过了什么?