0

我正在尝试为由两个独立tf.keras.Model对象组成的变分自动编码器 (VAE) 编写自定义训练循环。这个 VAE 的目标是多类分类。像往常一样,编码器模型的输出作为解码器模型的输入。解码器是循环解码器。同样像往常一样,VAE 中涉及两个损失函数:重建损失(分类交叉熵)和潜在损失。我当前架构的灵感来自这个github上的 pytorch 实现。

问题:每当我使用tape.gradient(loss, decoder.trainable_weights)解码器模型计算梯度时,返回的列表中每个元素只有 NoneType 对象。我假设我在使用 时犯了一些错误reconstruction_tensor,它位于我在下面编写的代码的底部附近。由于我需要进行迭代解码过程,如何在reconstruction_tensor不返回 NoneType 渐变元素列表的情况下使用类似的东西?如果您愿意,可以使用此colab 笔记本运行代码。

为了进一步阐明这个问题中的张量是什么样的,我将说明原始输入、将分配预测“令牌”的零张量,以及基于来自解码器的预测“令牌”对零张量的单次更新:

Example original input tensor of shape (batch_size, max_seq_length, num_classes):
 _    _         _     _         _     _         _    _
|    |  1 0 0 0  |   |  0 1 0 0  |   |  0 0 0 1  |    |
|    |  0 1 0 0  |   |  1 0 0 0  |   |  1 0 0 0  |    |
|_   |_ 0 0 1 0 _| , |_ 0 0 0 1 _|,  |_ 0 1 0 0 _|   _|

Initial zeros tensor:
 _    _         _     _         _     _         _    _
|    |  0 0 0 0  |   |  0 0 0 0  |   |  0 0 0 0  |    |
|    |  0 0 0 0  |   |  0 0 0 0  |   |  0 0 0 0  |    |
|_   |_ 0 0 0 0 _| , |_ 0 0 0 0 _|,  |_ 0 0 0 0 _|   _|

Example zeros tensor after a single iteration of the decoding loop:
 _    _                 _     _                 _     _                   _    _
|    |  0.2 0.4 0.1 0.3  |   |  0.1 0.2 0.6 0.1  |   |  0.7 0.05 0.05 0.2  |    |
|    |  0   0   0   0    |   |  0   0   0   0    |   |  0   0    0    0    |    |
|_   |_ 0   0   0   0   _| , |_ 0   0   0   0   _|,  |_ 0   0    0    0   _|   _|

这是重现问题的代码:

# Arbitrary data
batch_size = 3  
max_seq_length = 3
num_classes = 4
original_inputs = tf.one_hot(tf.argmax((np.random.randn(batch_size, max_seq_length, num_classes)), axis=2), depth=num_classes)
latent_dims = 5  # Must be less than (max_seq_length * num_classes)

def sampling(inputs):
    """Reparametrization function. Used for Lambda layer"""

    mus, log_vars = inputs
    epsilon = tf.keras.backend.random_normal(shape=tf.keras.backend.shape(mus))
    z = mus + tf.keras.backend.exp(log_vars/2) * epsilon

    return z

def latent_loss_fxn(mus, log_vars):
    """Return latent loss for means and log variance."""

    return -0.5 * tf.keras.backend.mean(1. + log_vars - tf.keras.backend.exp(log_vars) - tf.keras.backend.pow(mus, 2))

class DummyEncoder(tf.keras.Model):
    def __init__(self, latent_dimension):
        """Define the hidden layer (bottleneck) and sampling layers"""

        super().__init__()
        self.hidden = tf.keras.layers.Dense(units=32)
        self.dense_mus = tf.keras.layers.Dense(units=latent_dimension)
        self.dense_log_vars = tf.keras.layers.Dense(units=latent_dimension)
        self.sampling = tf.keras.layers.Lambda(function=sampling)

    def call(self, inputs):
        """Define forward computation that outputs z, mu, log_var of input."""

        dense_projection = self.hidden(inputs)

        mus = self.dense_mus(dense_projection)
        log_vars = self.dense_log_vars(dense_projection)
        z = self.sampling([mus, log_vars])

        return z, mus, log_vars
        

class DummyDecoder(tf.keras.Model):
    def __init__(self, num_classes):
        """Define GRU layer and the Dense output layer"""

        super().__init__()
        self.gru = tf.keras.layers.GRU(units=1, return_sequences=True, return_state=True)
        self.dense = tf.keras.layers.Dense(units=num_classes, activation='softmax')

    def call(self, x, hidden_states=None):
        """Define forward computation"""

        outputs, h_t = self.gru(x, hidden_states)

        # The purpose of this computation is to use the unnormalized log
        # probabilities from the GRU to produce normalized probabilities via
        # the softmax activation function in the Dense layer
        reconstructions = self.dense(outputs)

        return reconstructions, h_t

# Instantiate the models
encoder_model = DummyEncoder(latent_dimension=5)
decoder_model = DummyDecoder(num_classes=num_classes)

# Instantiate reconstruction loss function
cce_loss_fxn = tf.keras.losses.CategoricalCrossentropy()

# Begin tape
with tf.GradientTape(persistent=True) as tape:
    # Flatten the inputs for the encoder
    reshaped_inputs = tf.reshape(original_inputs, shape=(tf.shape(original_inputs)[0], -1))

    # Encode the input
    z, mus, log_vars = encoder_model(reshaped_inputs, training=True)

    # Expand dimensions of z so it meets recurrent decoder requirements of
    # (batch, timesteps, features)
    z = tf.expand_dims(z, axis=1)

    ################################
    # SUSPECTED CAUSE OF PROBLEM
    ################################

    # A tensor that will be modified based on model outputs
    reconstruction_tensor = tf.Variable(tf.zeros_like(original_inputs))

    ################################
    # END SUSPECTED CAUSE OF PROBLEM
    ################################

    # A decoding loop to iteratively generate the next token (i.e., outputs)... 
    # in the sequence
    hidden_states = None
    for ith_token in range(max_seq_length):

        # Reconstruct the ith_token for a given sample in the batch
        reconstructions, hidden_states = decoder_model(z, hidden_states, training=True)

        # Reshape the reconstructions to allow assigning to reconstruction_tensor
        reconstructions = tf.squeeze(reconstructions)

        # After the loop is done iterating, this tensor is the model's prediction of the 
        # original inputs. Therefore, after a single iteration of the loop, 
        # a single token prediction for each sample in the batch is assigned to
        # this tensor.
        reconstruction_tensor = reconstruction_tensor[:, ith_token,:].assign(reconstructions)

    # Calculates losses
    recon_loss = cce_loss_fxn(original_inputs, reconstruction_tensor)
    latent_loss = latent_loss_fxn(mus, log_vars)
    loss = recon_loss + latent_loss

# Calculate gradients
encoder_gradients = tape.gradient(loss, encoder_model.trainable_weights)
decoder_gradients = tape.gradient(loss, decoder_model.trainable_weights)

# Release tape
del tape

# Inspect gradients
print('Valid Encoder Gradients:', not(None in encoder_gradients))
print('Valid Decoder Gradients:', not(None in decoder_gradients), ' -- ', decoder_gradients)

>>> Valid Encoder Gradients: True
>>> Valid Decoder Gradients: False -- [None, None, None, None, None]
4

1 回答 1

0

找到了我的问题的“解决方案”:

在 GradientTape() 上下文管理器中使用 tf.Variable 肯定有一些问题。虽然我不知道那个问题是什么,但通过用列表替换reconstructions_tensor,在解码迭代期间附加到该列表,然后堆叠列表,可以毫无问题地计算梯度。colab notebook 反映了这些变化。请参阅下面的代码片段以获取修复:

....
....
with tf.GradientTape(persistent=True) as tape:
    ....
    ....

    # FIX
    reconstructions_tensor = []

    hidden_states = None
    for ith_token in range(max_seq_length):
        # Reconstruct the ith_token for a given sample in the batch
        reconstructions, hidden_states = decoder_model(z, hidden_states, training=True)

        # Reshape the reconstructions
        reconstructions = tf.squeeze(reconstructions)

        # FIX
        # Appending to the list which will eventually be stacked
        reconstructions_tensor.append(reconstructions)
    
    # FIX
    # Stack the reconstructions along axis=1 to get same result as previous assignment with zeros tensor
    reconstructions_tensor = tf.stack(reconstructions_tensor, axis=1)
....
....
# Successful gradient computations and subsequent optimization of models
# ....

编辑1:

如果一个模型可以在图形模式下运行,我认为这种“解决方案”并不理想。我有限的理解是图形模式不适用于 python 对象,例如list.

于 2021-07-22T16:23:29.587 回答