1

这是我作为问题提出的一个问题,但还没有收到包作者的消息,所以我想我会在这里问这个问题。谢谢!

在使用滞后的 xreg 进行预测时,我注意到一些不一致之处。具体来说,预测 h <= 滞后期。在生成预测之前,提供给原始模型的历史数据似乎没有添加到新数据中。在下面的示例中,我使用 fpp3 中的 lag = 2 示例。第一个预测fc1与书中生成的预测相同。在第二个预测fc2中,我new_data通过将历史广告数据与生成的新广告数据绑定来增加insurance_future. 当我这样做时,我会在fc2vs中得到不同的预测fc1。在我看来,预测中的预测fc1无法访问历史(xreg)数据,因此 TVaderts 被视为NA在地平线上的前两个步骤。这个对吗?如果是这样,不应该将这些数据原样包含在其中fc2吗?这可能与此有关。

library(fpp3)
#> ── Attaching packages ──────────────────────────────────────────── fpp3 0.4.0 ──
#> ✓ tibble      3.1.2      ✓ tsibble     1.0.1 
#> ✓ dplyr       1.0.6      ✓ tsibbledata 0.3.0 
#> ✓ tidyr       1.1.3      ✓ feasts      0.2.1 
#> ✓ lubridate   1.7.10     ✓ fable       0.3.1 
#> ✓ ggplot2     3.3.3
#> ── Conflicts ───────────────────────────────────────────────── fpp3_conflicts ──
#> x lubridate::date()    masks base::date()
#> x dplyr::filter()      masks stats::filter()
#> x tsibble::intersect() masks base::intersect()
#> x tsibble::interval()  masks lubridate::interval()
#> x dplyr::lag()         masks stats::lag()
#> x tsibble::setdiff()   masks base::setdiff()
#> x tsibble::union()     masks base::union()
library(fabletools)
library(fable)
library(dplyr)
library(tsibble)

fit <- insurance %>%
  # Restrict data so models use same fitting period
  # Estimate models
  model(
    lag2 = ARIMA(Quotes ~ pdq(d = 0) +
                   TVadverts + lag(TVadverts) +
                   lag(TVadverts, 2))
  )

insurance_future <- new_data(insurance, 20) %>%
  mutate(TVadverts = 8)

# Forecast as shown in https://otexts.com/fpp3/lagged-predictors.html
fc1 <- fit %>%
  forecast(insurance_future)

# Manually pre-pend historic advert data to future data to ensure presence of
# lagged regressors
fc2 <- fit %>% 
  forecast(bind_rows(select(insurance, -Quotes), insurance_future)) %>%
  filter_index(as.character(min(insurance_future$Month)) ~ .)

print(fc1)
#> # A fable: 20 x 5 [1M]
#> # Key:     .model [1]
#>    .model    Month      Quotes .mean TVadverts
#>    <chr>     <mth>      <dist> <dbl>     <dbl>
#>  1 lag2   2005 May N(13, 0.23)  13.0         8
#>  2 lag2   2005 Jun N(13, 0.59)  13.0         8
#>  3 lag2   2005 Jul N(13, 0.72)  13.2         8
#>  4 lag2   2005 Aug N(13, 0.72)  13.2         8
#>  5 lag2   2005 Sep N(13, 0.72)  13.2         8
#>  6 lag2   2005 Oct N(13, 0.72)  13.2         8
#>  7 lag2   2005 Nov N(13, 0.72)  13.2         8
#>  8 lag2   2005 Dec N(13, 0.72)  13.2         8
#>  9 lag2   2006 Jan N(13, 0.72)  13.2         8
#> 10 lag2   2006 Feb N(13, 0.72)  13.2         8
#> 11 lag2   2006 Mar N(13, 0.72)  13.2         8
#> 12 lag2   2006 Apr N(13, 0.72)  13.2         8
#> 13 lag2   2006 May N(13, 0.72)  13.2         8
#> 14 lag2   2006 Jun N(13, 0.72)  13.2         8
#> 15 lag2   2006 Jul N(13, 0.72)  13.2         8
#> 16 lag2   2006 Aug N(13, 0.72)  13.2         8
#> 17 lag2   2006 Sep N(13, 0.72)  13.2         8
#> 18 lag2   2006 Oct N(13, 0.72)  13.2         8
#> 19 lag2   2006 Nov N(13, 0.72)  13.2         8
#> 20 lag2   2006 Dec N(13, 0.72)  13.2         8
print(fc2)
#> # A fable: 20 x 5 [1M]
#> # Key:     .model [1]
#>    .model    Month      Quotes .mean TVadverts
#>    <chr>     <mth>      <dist> <dbl>     <dbl>
#>  1 lag2   2005 May N(14, 0.72)  13.5         8
#>  2 lag2   2005 Jun N(13, 0.72)  13.3         8
#>  3 lag2   2005 Jul N(13, 0.72)  13.2         8
#>  4 lag2   2005 Aug N(13, 0.72)  13.2         8
#>  5 lag2   2005 Sep N(13, 0.72)  13.2         8
#>  6 lag2   2005 Oct N(13, 0.72)  13.2         8
#>  7 lag2   2005 Nov N(13, 0.72)  13.2         8
#>  8 lag2   2005 Dec N(13, 0.72)  13.2         8
#>  9 lag2   2006 Jan N(13, 0.72)  13.2         8
#> 10 lag2   2006 Feb N(13, 0.72)  13.2         8
#> 11 lag2   2006 Mar N(13, 0.72)  13.2         8
#> 12 lag2   2006 Apr N(13, 0.72)  13.2         8
#> 13 lag2   2006 May N(13, 0.72)  13.2         8
#> 14 lag2   2006 Jun N(13, 0.72)  13.2         8
#> 15 lag2   2006 Jul N(13, 0.72)  13.2         8
#> 16 lag2   2006 Aug N(13, 0.72)  13.2         8
#> 17 lag2   2006 Sep N(13, 0.72)  13.2         8
#> 18 lag2   2006 Oct N(13, 0.72)  13.2         8
#> 19 lag2   2006 Nov N(13, 0.72)  13.2         8
#> 20 lag2   2006 Dec N(13, 0.72)  13.2         8

waldo::compare(fc1, fc2)
#> `old$Quotes[[1]]$mu`: 13.0
#> `new$Quotes[[1]]$mu`: 13.5
#> 
#> `old$Quotes[[1]]$sigma`: 0.5
#> `new$Quotes[[1]]$sigma`: 0.8
#> 
#> `old$Quotes[[2]]$mu`: 13.0
#> `new$Quotes[[2]]$mu`: 13.3
#> 
#> `old$Quotes[[2]]$sigma`: 0.77
#> `new$Quotes[[2]]$sigma`: 0.85
#> 
#> `old$.mean[1:5]`: 13.0 13.0 13.2 13.2 13.2
#> `new$.mean[1:5]`: 13.5 13.3 13.2 13.2 13.2

奇怪的是,当我手动(而不是在公式中)创建新的滞后变量时,模型结果与 fpp3 中的“基本情况”匹配(fc1在我的示例中)。

insurance_manlag <- insurance %>%
  mutate(TVadverts1 = lag(TVadverts),
         TVadverts2 = lag(TVadverts, 2))

fit <- insurance_manlag %>%
  # Restrict data so models use same fitting period
  # Estimate models
  model(
    lag2 = ARIMA(Quotes ~ pdq(d = 0) +
                   TVadverts + TVadverts1 + TVadverts2)
  )

insurance_man_future <- append_row(insurance, n = 20) %>%
  replace_na(replace = list(TVadverts = 8)) %>%
  mutate(TVadverts1 = lag(TVadverts),
         TVadverts2 = lag(TVadverts, 2)) %>%
  slice_tail(n = 20)

# Forecast as shown in https://otexts.com/fpp3/lagged-predictors.html
fc3 <- fit %>%
  forecast(insurance_man_future)

waldo::compare(fc1$Quotes, fc3$Quotes)
#> ✓ No differences
waldo::compare(fc2$Quotes, fc3$Quotes)
#> `old[[1]]$mu`: 13.5
#> `new[[1]]$mu`: 13.0
#> 
#> `old[[1]]$sigma`: 0.8
#> `new[[1]]$sigma`: 0.5
#> 
#> `old[[2]]$mu`: 13.3
#> `new[[2]]$mu`: 13.0
#> 
#> `old[[2]]$sigma`: 0.85
#> `new[[2]]$sigma`: 0.77

reprex 包创建于 2021-06-02 (v2.0.0 )

这种复制使我相信这fc1是正确的,而不是fc2。如果是这样,发生了什么fc2导致它与fc1(和fc3)中的预测不同?

4

1 回答 1

2

{fable}中,产生预测的模型保留产生预测所需的所有信息。当使用推荐的接口获取时fc1(如书中所示),模型会保留 2 个最近的值TVadverts。虽然不需要它们来估计模型,但它们是产生前几个预测所必需的输入。

forecast()函数与 一起使用时new_data,预期行为是让模型为 中的每个时间点生成预测new_data。我相信从不是系列末尾的时间点进行的预测尚未实施,因此我将对其进行更改以产生错误。

一般来说,lag()在模型公式中使用该函数时,无需预先添加历史数据。这些模型将存储和调用预测所需的值。

于 2021-07-20T23:32:02.353 回答