这是我对水壶问题的解决方案
:- use_module(library(clpfd)).
initial(state(8, 0, 0)).
final(state(4, 4, 0)).
constraint(A0, A1, B0, B1, C0, C1, V) :-
A0 #< A1,
( B0 #> 0, T #= min(V - A0, B0), A1 #= A0 + T, B1 #= B0 - T, C1 #= C0
; C0 #> 0, T #= min(V - A0, C0), A1 #= A0 + T, C1 #= C0 - T, B1 #= B0
).
transition(state(A0, B0, C0), state(A1, B1, C1)) :-
( constraint(A0, A1, B0, B1, C0, C1, 8)
; constraint(B0, B1, A0, A1, C0, C1, 5)
; constraint(C0, C1, A0, A1, B0, B1, 3)
).
solve(A, A, _, [A]).
solve(A, B, P, [A|Q]) :-
transition(A, A1),
\+ member(A1, P),
solve(A1, B, [A|P], Q).
path(P) :-
initial(S0),
final(S),
solve(S0, S, [], P).
有没有办法在P
不遍历所有选项的情况下找到最小长度?