我在 Cantera 上有这个脚本。我想将脚本的两个部分的数据保存到 csv 中:第一个评估 Tfinal 与自燃延迟时间,第二个评估 NTC 行为。在第一部分中,示例建议取消注释 # timeHistory.to_csv("time_history.csv") 但它不起作用。我想我需要创建一个数据框,因为它的定义不明确(我想)。不仅如此,我还看到了这个错误:<cantera.composite.SolutionArray object at 0x7f4badca0fd0>。
我该如何解决这个问题,如何为这个脚本创建两个 csv?
非常感谢
import pandas as pd
import numpy as np
import time
import cantera as ct
print('Runnning Cantera version: ' + ct.__version__)
import matplotlib.pyplot as plt
plt.rcParams['axes.labelsize'] = 18
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12
plt.rcParams['figure.autolayout'] = True
plt.style.use('ggplot')
plt.style.use('seaborn-pastel')
gas = ct.Solution('Seiser.cti')
# Define the reactor temperature and pressure
reactor_temperature = 1000 # Kelvin
reactor_pressure = 101325 # Pascals
gas.TP = reactor_temperature, reactor_pressure
# Define the fuel, oxidizer and set the stoichiometry
gas.set_equivalence_ratio(phi=1.0, fuel="nc7h16", oxidizer={"o2": 1.0, "n2": 3.76})
# Create a batch reactor object and add it to a reactor network
# In this example, the batch reactor will be the only reactor
# in the network
r = ct.IdealGasReactor(contents=gas, name="Batch Reactor")
reactor_network = ct.ReactorNet([r])
# use the above list to create a DataFrame
time_history = ct.SolutionArray(gas, extra="t")
def ignition_delay(states, species):
"""
This function computes the ignition delay from the occurence of the
peak in species' concentration.
"""
i_ign = states(species).Y.argmax()
return states.t[i_ign]
reference_species = "oh"
# Tic
t0 = time.time()
# This is a starting estimate. If you do not get an ignition within this time, increase it
estimated_ignition_delay_time = 0.1
t = 0
counter = 1
while t < estimated_ignition_delay_time:
t = reactor_network.step()
if not counter % 10:
# We will save only every 10th value. Otherwise, this takes too long
# Note that the species concentrations are mass fractions
time_history.append(r.thermo.state, t=t)
counter += 1
# We will use the 'oh' species to compute the ignition delay
tau = ignition_delay(time_history, reference_species)
# Toc
t1 = time.time()
print(f"Computed Ignition Delay: {tau:.3e} seconds. Took {t1-t0:3.2f}s to compute")
# If you want to save all the data - molefractions, temperature, pressure, etc
# >>>>>>>>>>>>>>>>>>>>>>>>uncomment the next line
time_history.to_csv("time_history_TEST.csv")
plt.figure()
plt.plot(time_history.t, time_history(reference_species).Y, "-o")
plt.xlabel("Time (s)")
plt.ylabel("$Y_{OH}$")
plt.xlim([0,0.05])
plt.arrow(0, 0.008, tau, 0, width=0.0001, head_width=0.0005,
head_length=0.001, length_includes_head=True, color="r", shape="full")
plt.annotate(r"$Ignition Delay: \tau_{ign}$", xy=(0,0), xytext=(0.01, 0.0082), fontsize=16);
# Make a list of all the temperatures we would like to run simulations at
T = np.hstack((np.arange(1800, 900, -100), np.arange(975, 475, -25)))
estimated_ignition_delay_times = np.ones_like(T, dtype=float)
# Make time adjustments for the highest and lowest temperatures. This we do empirically
estimated_ignition_delay_times[:6] = 6 * [0.1]
estimated_ignition_delay_times[-4:-2] = 10
estimated_ignition_delay_times[-2:] = 100
# Now create a SolutionArray out of these
ignition_delays = ct.SolutionArray(gas, shape=T.shape, extra={"tau": estimated_ignition_delay_times})
ignition_delays.set_equivalence_ratio(1.0, fuel="nc7h16", oxidizer={"o2": 1.0, "n2": 3.76})
ignition_delays.TP = T, reactor_pressure
for i, state in enumerate(ignition_delays):
# Setup the gas and reactor
gas.TPX = state.TPX
r = ct.IdealGasReactor(contents=gas, name="Batch Reactor")
reactor_network = ct.ReactorNet([r])
reference_species_history = []
time_history = []
t0 = time.time()
t = 0
while t < estimated_ignition_delay_times[i]:
t = reactor_network.step()
time_history.append(t)
reference_species_history.append(gas[reference_species].X[0])
i_ign = np.array(reference_species_history).argmax()
tau = time_history[i_ign]
t1 = time.time()
print('Computed Ignition Delay: {:.3e} seconds for T={}K. Took {:3.2f}s to compute'.format(tau, state.T, t1-t0))
ignition_delays.tau[i] = tau
fig = plt.figure()
ax = fig.add_subplot(111)
ax.semilogy(1000/ignition_delays.T, ignition_delays.tau, 'o-')
ax.set_ylabel('Ignition Delay (s)')
ax.set_xlabel(r'$\frac{1000}{T (K)}$', fontsize=18)
# Add a second axis on top to plot the temperature for better readability
ax2 = ax.twiny()
ticks = ax.get_xticks()
ax2.set_xticks(ticks)
ax2.set_xticklabels((1000/ticks).round(1))
ax2.set_xlim(ax.get_xlim())
ax2.set_xlabel(r'Temperature: $T(K)$');