2

我正在使用pytransitions并且遇到了需要有几个与其他状态无关的状态,并且使用非确定性状态机进行建模非常有意义,这在数学上是等效的。

我想要类似下面的东西

from transitions import Machine
from transitions import EventData


class Matter(object):
    def __init__(self):
        transitions1 = [
            {'trigger': 'heat', 'source': 'solid', 'dest': 'liquid'},
            {'trigger': 'heat', 'source': 'liquid', 'dest': 'gas'},
            {'trigger': 'cool', 'source': 'gas', 'dest': 'liquid'},
            {'trigger': 'cool', 'source': 'liquid', 'dest': 'solid'}
        ]

        transitions2 = [
            {'trigger': 'turn_on', 'source': 'off', 'dest': 'on'},
            {'trigger': 'turn_off', 'source': 'on', 'dest': 'off'},
        ]
        self.machine = Machine(
                model=self,
                states=[['solid', 'liquid', 'gas'], ['on', 'off']],
                transitions=[transitions1, transitions2],
                initial=['solid', 'off'],
                send_event=True
        )

    def on_enter_gas(self, event: EventData):
        print(f"entering gas from {event.transition.source}")

    def on_enter_liquid(self, event: EventData):
        print(f"entering liquid from {event.transition.source}")

    def on_enter_solid(self, event: EventData):
        print(f"entering solid from {event.transition.source}")

    def on_enter_on(self, event: EventData):
        print(f"entering on from {event.transition.source}")

    def on_enter_off(self, event: EventData):
        print(f"entering off from {event.transition.source}")

我可以定义一组新的状态states=itertools.product(states1, states2),然后定义所有转换,如等价定理所示。

我想知道库中是否支持这种行为,如果支持,如何实现。

我有不止 2 组(大部分)独立状态。真的,我有一堆偶尔会有交互的切换,但大多数都是独立的。

4

1 回答 1

2

...拥有几个与其他状态无关的状态,并且使用非确定性状态机进行建模非常有意义

对我来说,这听起来像您正在寻找的不一定是非确定性,而是分层/复合状态和并发/并行性

您可以使用还具有并发性的转换分层状态机扩展:

from transitions.extensions import HierarchicalMachine

states1 = ['solid', 'liquid', 'gas']
states2 = ['on', 'off']

transitions1 = [
    {'trigger': 'heat', 'source': 'solid', 'dest': 'liquid'},
    {'trigger': 'heat', 'source': 'liquid', 'dest': 'gas'},
    {'trigger': 'cool', 'source': 'gas', 'dest': 'liquid'},
    {'trigger': 'cool', 'source': 'liquid', 'dest': 'solid'}
]

transitions2 = [
    {'trigger': 'turn_on', 'source': 'off', 'dest': 'on'},
    {'trigger': 'turn_off', 'source': 'on', 'dest': 'off'},
]

combined_states = [
    {"name": "running", "parallel":
        [
            dict(name="component1", states=states1, transitions=transitions1, initial=states1[0]),
            dict(name="component2", states=states2, transitions=transitions2, initial=states2[0])
        ]
    }
]

m = HierarchicalMachine(states=combined_states, auto_transitions=False, initial="running")
print(m.state)  # >>> ['running_component1_solid', 'running_component2_on']
m.turn_off()
print(m.state)  # >>> ['running_component1_solid', 'running_component2_off']

但是,HSM 比简单的要复杂得多Machines。该文档提到了一些限制,考虑到需要遵循的命名约定和嵌套/初始化配置。

这就是为什么我通常会尝试为我的 FSM 架构找到最简单的解决方案。现在你的嵌套是相当平坦的,它也可以通过一组模型和Machines. 转换的“规则手册”方法使得只需一台机器及其“调度”方法即可轻松管理处于不同状态的多个模型:

from transitions import Machine


class Model:
    pass


class MultiMachine(Machine):

    def __init__(self, configurations):
        # Initialize the machine blank, no states, no transitions and
        # no initial states. Disable auto_transitions since there shouldn't
        # be the possibility to transition e.g. from 'on' to 'liquid'.
        # Furthermore, ignore_invalid_triggers so that events not considered
        # by a model will not throw an exception.
        super().__init__(model=None, states=[], transitions=[], initial=None, auto_transitions=False,
                         ignore_invalid_triggers=True)
        # create a model for each configuration
        for states, transitions, initial in configurations:
            self.add_states(states)
            self.add_transitions(transitions)
            self.add_model(Model(), initial=initial)

    @property
    def state(self):
        return [model.state for model in self.models]


m = MultiMachine([(states1, transitions1, 'solid'), (states2, transitions2, 'off')])
assert m.state == ['solid', 'off']
m.dispatch("turn_on")
assert m.state == ['solid', 'on']
m.dispatch("heat")
assert m.state == ['liquid', 'on']

从您的评论中:

如何根据另一台子机的状态在一台子机中添加条件转换?例如,热应该只有在开的情况下才能使固体变成气体?[...] HSM,也许在这种情况下更好。

这可以通过heat仅在源状态上定义事件来使用 HSM 解决on_*。但是,如果您有许多此类因变量,则嵌套可能会变得非常复杂。相反,您可以将对其他机器的is_<state>便利功能的引用添加到所有相关转换的条件列表中。这可以在初始化后完成,以防引导出现问题:

from transitions import Machine
from transitions.core import Condition

states1 = ['solid', 'liquid', 'gas']
states2 = ['off', 'on']

m1 = Machine(states=states1, initial=states1[0],
             transitions=[{'trigger': 'heat', 'source': 'solid', 'dest': 'liquid'},
                          {'trigger': 'heat', 'source': 'liquid', 'dest': 'gas'},
                          {'trigger': 'cool', 'source': 'gas', 'dest': 'liquid'},
                          {'trigger': 'cool', 'source': 'liquid', 'dest': 'solid'}])
m2 = Machine(states=states2, initial=states2[0],
             transitions=[{'trigger': 'turn_on', 'source': 'off', 'dest': 'on'},
                          {'trigger': 'turn_off', 'source': 'on', 'dest': 'off'}])

# get all heat transitions and add the condition that they may only be valid when m2.is_on returns True
for trans in m1.get_transitions("heat"):
    trans.conditions.append(Condition(func=m2.is_on))
    # if you want to add an 'unless' statement pass `target=False`
    # to the condition. e.g. "heat unless m2 is off"
    # trans.conditions.append(Condition(func=m2.is_off, target=False))

assert m1.is_solid()
assert m2.is_off()
assert not m1.heat()
assert m1.is_solid()
assert m2.turn_on()
assert m1.heat()
assert m1.is_liquid()
于 2021-07-12T08:42:48.833 回答