我正在尝试将帕累托前面添加到我拥有的散点图中。散点图数据为:
array([[1.44100000e+04, 3.31808987e+07],
[1.21250000e+04, 3.22901074e+07],
[6.03000000e+03, 2.84933900e+07],
[8.32500000e+03, 2.83091317e+07],
[6.68000000e+03, 2.56373373e+07],
[5.33500000e+03, 1.89331461e+07],
[3.87500000e+03, 1.84107940e+07],
[3.12500000e+03, 1.60416570e+07],
[6.18000000e+03, 1.48054565e+07],
[4.62500000e+03, 1.33395341e+07],
[5.22500000e+03, 1.23150492e+07],
[3.14500000e+03, 1.20244820e+07],
[6.79500000e+03, 1.19525083e+07],
[2.92000000e+03, 9.18176770e+06],
[5.45000000e+02, 5.66882578e+06]])
散点图如下所示:
我使用本教程来绘制帕累托图,但由于某种原因,结果非常奇怪,我得到了很小的红线:
这是我使用的代码:
def identify_pareto(scores):
# Count number of items
population_size = scores.shape[0]
# Create a NumPy index for scores on the pareto front (zero indexed)
population_ids = np.arange(population_size)
# Create a starting list of items on the Pareto front
# All items start off as being labelled as on the Parteo front
pareto_front = np.ones(population_size, dtype=bool)
print(pareto_front)
# Loop through each item. This will then be compared with all other items
for i in range(population_size):
# Loop through all other items
for j in range(population_size):
# Check if our 'i' pint is dominated by out 'j' point
if all(scores[j] >= scores[i]) and any(scores[j] > scores[i]):
# j dominates i. Label 'i' point as not on Pareto front
pareto_front[i] = 0
# Stop further comparisons with 'i' (no more comparisons needed)
break
# Return ids of scenarios on pareto front
return population_ids[pareto_front]
pareto = identify_pareto(scores)
pareto_front_df = pd.DataFrame(pareto_front)
pareto_front_df.sort_values(0, inplace=True)
pareto_front = pareto_front_df.values
#here I get as output weird results:
>>>
array([[ 5, 81],
[15, 80],
[30, 79],
[55, 77],
[70, 65],
[80, 60],
[90, 40],
[97, 23],
[99, 4]])
x_all = scores[:, 0]
y_all = scores[:, 1]
x_pareto = pareto_front[:, 0]
y_pareto = pareto_front[:, 1]
plt.scatter(x_all, y_all)
plt.plot(x_pareto, y_pareto, color='r')
plt.xlabel('Objective A')
plt.ylabel('Objective B')
plt.show()
结果是微小的红线。
我的问题是,我的错误在哪里?我怎样才能回到帕累托线?