我正在研究一个文本分类问题,并尝试使用 Kerastuner 来确定我的 LSTM 网络的最佳配置。以下是相同的代码:
keras 调谐器
def build_model(hp):
num_hidden_layers =1
num_units = 8
dropout_rate = 0.1
learning_rate=0.01
if hp:
num_hidden_layers = hp.Int('num_hidden_layers', min_value=2, max_value=100, step=5)
num_units = hp.Int('num_units', min_value=50, max_value=2000, step=50)
dropout_rate = hp.Float('dropout_rate', min_value=0.1, max_value=0.5)
learning_rate = hp.Float('learning_rate', min_value=0.0001, max_value=0.01)
momentum_rate = hp.Float('momentum_rate', min_value=0.5, max_value=0.9)
vocab_size = len(tokenizer.word_index)+1
max_sequence_length = 500
embedding_size = 300
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Embedding(input_dim=vocab_size , output_dim=embedding_size, input_length=max_sequence_length , weights=[embedding_matrix], trainable=False))
for _ in range(0,num_hidden_layers):
model.add(tf.keras.layers.LSTM(num_units))
model.add(tf.keras.layers.Dropout(dropout_rate))
model.add(tf.keras.layers.Dense(1, activation='sigmoid'))
model.compile(
loss = 'mse',
optimizer =tf.keras.optimizers.SGD(learning_rate=learning_rate, momentum=momentum_rate),
metrics = [tf.keras.metrics.BinaryCrossentropy(name='binary_crossentropy')]
)
return model
class CustomTuner(kerastuner.tuners.BayesianOptimization):
def run_trial(self, trial, *args, **kwargs):
kwargs['batch_size'] = trial.hyperparameters.Int('batch_size', 128,1024, step=32)
super(CustomTuner, self).run_trial(trial,*args,**kwargs)
tuner = CustomTuner(
build_model,
objective=kerastuner.Objective('val_loss','min'),
max_trials=2,
executions_per_trial=1,
directory='/dbfs/FileStore/GDPR_Dev/Data/',
project_name = 'nn_logs_lstm_30062021',
overwrite=True
代码失败并出现以下错误:
ValueError: 层 lstm_1 的输入 0 与层不兼容:预期 ndim=3,发现 ndim=2。收到的完整形状:(无,50)
谁能帮我解决这个问题?