1

我从来没有得出任何结论:这个问题,所以我想我会改写它并再次问。

我想对我的数据集进行 10,000 次二次抽样,以便为我的每个响应生成均值和 95% 的 CI。

以下是数据集结构的示例:

x <- read.table(tc <- textConnection("
study      expt    variable  value1  value2
  1         1         A       1.0      1.1 
  1         2         B       1.1      2.1 
  1         3         B       1.2      2.9
  1         4         C       1.5      2.3 
  2         1         A       1.7      0.3 
  2         2         A       1.9      0.3 
  3         1         A       0.2      0.5"), header = TRUE); close(tc)

我只想对每个研究/变量组合进行一次二次抽样。因此,例如,子集数据集将如下所示:

study      expt    variable  value1  value2
  1         1         A       1.0      1.1 
  1         2         B       1.1      2.1 
  1         4         C       1.5      2.3 
  2         1         A       1.7      0.3 
  3         1         A       0.2      0.5

请注意,第 3 行和第 6 行已经消失,因为它们都测量了一个变量两次(第一种情况是 B,第二种情况是 A)。

我想一次又一次地绘制二次抽样数据集,因此我可以推导出 value1 和 value2 的整体均值,每个变量的置信区间为 95%。所以在整个子采样例程之后我想要的输出是:

variable   mean_value1   lower_value1  upper_value1  mean_value2  etc....
   A            2.3           2.0          2.6           2.1
   B            2.5           2.0          3.0           2.5
   C            2.1           1.9          2.3           2.6

这是我必须获取子集的一些代码:

 subsample<-function(x, B){
samps<-ddply(x, .(study,variable), nrow)[,3] #for each study/variable combination, 
                                                  #how many experiments are there
expIdx<-which(!duplicated(x$study)) #what is the first row of each study
n<-length(samps) #how many studies are there

sapply(1:B, function(a) { #use sapply for the looping, as it's more efficient than for
    idx<-floor(runif(n, rep(0,n), samps)) #get the experiment number-1 for each study
    x$value[idx+expIdx] #now get a vector of values
})

任何帮助表示赞赏。我知道这很复杂,所以如果您需要澄清,请告诉我!

4

2 回答 2

3

按研究、实验和变量拆分数据,然后将引导程序应用于每个子集。有很多方法可以做到这一点,包括:

sdfr <- with(dfr, split(dfr, list(Study, Experiment, Variable)))
sdfr <- Filter(nrow, sdfr)   #to remove empty data frames

lapply(sdfr, function(x) 
{
  boot(x$Response1, statistic = mean, R = 10000, sim = "parametric")
})
于 2011-07-25T15:12:31.417 回答
2

这是一个解决方案,虽然是公平的警告,但它不会很好地扩展,我不知道这种方案的统计有效性:

#Replicate your example data
set.seed(1)
dat <- expand.grid(Study = 1:4,Experiment = 1:3, Response = LETTERS[1:4])
dat$Value1 <- runif(48)
dat$Value2 <- runif(48)

#Function to apply to each Response level
#Note the rather inefficient use of ddply 
# in a for loop to do the 'stratified' 
# subsampling you describe
myFun <- function(x,B){
    rs <- matrix(NA,B,2)
    for (i in 1:B){
        temp <- ddply(x,.(Study), .fun = function(x) x[sample(1:nrow(x),1),])
        rs[i,] <- colMeans(temp[,4:5])
    }
    c(Value1 = mean(x$Value1), quantile(rs[,1],probs=c(0.025,0.975)),
            Value2 = mean(x$Value2), quantile(rs[,2],probs=c(0.025,0.975)))
}

ddply(dat,.(Response),.fun = myFun,B=50)

示例输出

  Response    Value1      2.5%     97.5%    Value2      2.5%     97.5%
1        A 0.4914725 0.2721876 0.8311799 0.4600546 0.2596446 0.6909686
2        B 0.5941457 0.4018281 0.8047503 0.5241470 0.2865285 0.7099486
3        C 0.4596998 0.2752685 0.6340614 0.5761497 0.3546133 0.8115933
4        D 0.5550651 0.2717772 0.7298913 0.4645609 0.1868757 0.7985816
于 2011-07-26T14:53:57.760 回答