示例代码
library(mlr3verse)
library(paradox)
library(drake)
my_plan = drake::drake_plan(
# learner
learner_classif = lrn(
"classif.ranger",
predict_type = "prob"
),
# task
task = tsk("german_credit"),
# set search_space
ps_classif = ParamSet$new(list(
ParamInt$new("num.trees", lower = 300, upper = 500),
ParamDbl$new("sample.fraction", lower = 0.7, upper = 0.8)
)),
# auto tunning
at = AutoTuner$new(
learner = learner_classif,
resampling = rsmp("cv", folds = 3),
measure = msr("classif.auc"),
search_space = ps_classif,
terminator = trm("evals", n_evals = 1000),
tuner = tnr("random_search")
),
# sampling
rr = resample(task, at, rsmp("cv", folds = 2))
)
make(my_plan)
在 mlr3 中调整模型时出现问题。如果模型的a lot of nodes' in the graph or
n_evals 太多。白天不能跑步。我打算把这份工作分成两天:第一天50%,第二天50%。
请问一下。
如何在第一天和第二天附加调整结果?
或者我如何可以随时停止调整并在另一个时间继续(结果仍然足够)?
谢谢 !!!