1

我正在使用Ray 1.3.0用于 RLlib)和SUMO 版本 1.9.2的组合来模拟多代理场景。我已将 RLlib 配置为使用单个PPO 网络,该网络通常由所有N个代理更新/使用。我的评估设置如下所示:

# === Evaluation Settings ===
# Evaluate with every `evaluation_interval` training iterations.
# The evaluation stats will be reported under the "evaluation" metric key.
# Note that evaluation is currently not parallelized, and that for Ape-X
# metrics are already only reported for the lowest epsilon workers.

"evaluation_interval": 20,

# Number of episodes to run per evaluation period. If using multiple
# evaluation workers, we will run at least this many episodes total.

"evaluation_num_episodes": 10,

# Whether to run evaluation in parallel to a Trainer.train() call
# using threading. Default=False.
# E.g. evaluation_interval=2 -> For every other training iteration,
# the Trainer.train() and Trainer.evaluate() calls run in parallel.
# Note: This is experimental. Possible pitfalls could be race conditions
# for weight synching at the beginning of the evaluation loop.

"evaluation_parallel_to_training": False,

# Internal flag that is set to True for evaluation workers.

"in_evaluation": True,

# Typical usage is to pass extra args to evaluation env creator
# and to disable exploration by computing deterministic actions.
# IMPORTANT NOTE: Policy gradient algorithms are able to find the optimal
# policy, even if this is a stochastic one. Setting "explore=False" here
# will result in the evaluation workers not using this optimal policy!

"evaluation_config": {
    # Example: overriding env_config, exploration, etc:
    "lr": 0, # To prevent any kind of learning during evaluation
    "explore": True # As required by PPO (read IMPORTANT NOTE above)
},

# Number of parallel workers to use for evaluation. Note that this is set
# to zero by default, which means evaluation will be run in the trainer
# process (only if evaluation_interval is not None). If you increase this,
# it will increase the Ray resource usage of the trainer since evaluation
# workers are created separately from rollout workers (used to sample data
# for training).

"evaluation_num_workers": 1,

# Customize the evaluation method. This must be a function of signature
# (trainer: Trainer, eval_workers: WorkerSet) -> metrics: dict. See the
# Trainer.evaluate() method to see the default implementation. The
# trainer guarantees all eval workers have the latest policy state before
# this function is called.

"custom_eval_function": None,

发生的情况是每 20 次迭代(每次迭代收集“X”个训练样本),至少有 10 集的评估运行。所有N个代理收到的奖励总和在这些情节中相加,并设置为该特定评估运行的奖励总和。随着时间的推移,我注意到有一种模式,奖励总和在相同的评估间隔内不断重复,并且学习无处可去。

更新(23/06/2021)

不幸的是,我没有为该特定运行激活 TensorBoard,但从每 10 集的评估期间收集的平均奖励(每 20 次迭代发生一次),很明显存在重复模式,如下面的注释图所示:

平均奖励与迭代次数

场景中的 20 个代理应该学习避免碰撞,而是继续以某种方式停滞在某个策略上,并最终在评估期间显示完全相同的奖励序列?

这是我如何配置评估方面的特征,还是我应该检查其他内容?如果有人能给我建议或指出正确的方向,我将不胜感激。

谢谢你。

4

2 回答 2

2

第 1 步:我注意到,当我出于某种原因停止运行,然后在恢复后从保存的检查点重新启动它时,TensorBoard 上的大多数图表(包括奖励)再次以完全相同的方式绘制了这条线,这使它看起来像序列在重复。

第 2 步:这让我相信我的检查点有问题。我使用循环比较了检查点中的权重,瞧,它们都是一样的!一点变化都没有!所以要么保存/恢复检查点有问题,经过一番玩弄后我发现情况并非如此。所以这只是意味着我的体重没有更新

第 3 步:我筛选了我的训练配置以查看是否存在阻止网络学习的内容,我注意到我已将“多代理”配置选项“policies_to_train”设置为不存在的策略。不幸的是,这要么没有引发警告/错误,要么确实发生了,但我完全错过了它。

解决步骤:通过正确设置多代理“policies_to_train”配置选项,它开始工作!

于 2021-06-24T08:47:31.690 回答
1

是不是由于多代理动态,您的策略正在追逐它的尾巴?你有多少政策?他们是否相互竞争/合作/中立?请注意,多智能体训练可能非常不稳定,看到这些波动是很正常的,因为不同的策略得到更新,然后不得不面对不同的“env”-动态 b/c(env=env+所有其他策略,出现作为环境的一部分)。

于 2021-06-23T07:03:33.263 回答