我有一个 CSS 类型的三次贝塞尔曲线,其中
A = 0,0
B = a, b where 0<a<1
C = p, q where 0<p<1
D = 1, 1
我想要一个pointOnBezier(a,b,p,q,x) => {x:x, y:y}
我发现这有帮助但没有数学公式的函数
https://upload.wikimedia.org/wikipedia/commons/d/db/B%C3%A9zier_3_big.gif
任何帮助将不胜感激。提前致谢!!!
我有一个 CSS 类型的三次贝塞尔曲线,其中
A = 0,0
B = a, b where 0<a<1
C = p, q where 0<p<1
D = 1, 1
我想要一个pointOnBezier(a,b,p,q,x) => {x:x, y:y}
我发现这有帮助但没有数学公式的函数
https://upload.wikimedia.org/wikipedia/commons/d/db/B%C3%A9zier_3_big.gif
任何帮助将不胜感激。提前致谢!!!
您可以在Wikipedia中找到三次贝塞尔曲线公式。
获得公式后,您需要通过x找到t,然后通过t找到y。要找到t,您需要求解三次方程。您可以从其他地方找到求解三次方程的代码,例如这篇文章。
这是供您参考的代码:
function getCubicBezierY(a, b, p, q, x) {
// By the Cubic Bézier curve formula, we know that
// 3(1-t)²ta + 3(1-t)t²p + t³ - x = 0
// After formatting it to the cubic equation form, we have
// (3a-3p+1)t³ + (3p-6a)t² + 3at - x = 0
// Solve the equation
const t = solveCubic(3*a-3*p+1, 3*p-6*a, 3*a, -x)[0]; // There should be only 1 root
const r = 1 - t;
// Find y by using the Cubic Bezier curve formula
return 3*r*r*t*b + 3*r*t*t*q + t*t*t;
}
// Functions for solving cubic equation
function cuberoot(x) {
var y = Math.pow(Math.abs(x), 1/3);
return x < 0 ? -y : y;
}
function solveCubic(a, b, c, d) {
if (Math.abs(a) < Number.EPSILON) { // Quadratic case, ax^2+bx+c=0
a = b; b = c; c = d;
if (Math.abs(a) < Number.EPSILON) { // Linear case, ax+b=0
a = b; b = c;
if (Math.abs(a) < Number.EPSILON) // Degenerate case
return [];
return [-b/a];
}
var D = b*b - 4*a*c;
if (Math.abs(D) < Number.EPSILON)
return [-b/(2*a)];
else if (D > 0)
return [(-b+Math.sqrt(D))/(2*a), (-b-Math.sqrt(D))/(2*a)];
return [];
}
// Convert to depressed cubic t^3+pt+q = 0 (subst x = t - b/3a)
var p = (3*a*c - b*b)/(3*a*a);
var q = (2*b*b*b - 9*a*b*c + 27*a*a*d)/(27*a*a*a);
var roots;
if (Math.abs(p) < Number.EPSILON) { // p = 0 -> t^3 = -q -> t = -q^1/3
roots = [cuberoot(-q)];
} else if (Math.abs(q) < Number.EPSILON) { // q = 0 -> t^3 + pt = 0 -> t(t^2+p)=0
roots = [0].concat(p < 0 ? [Math.sqrt(-p), -Math.sqrt(-p)] : []);
} else {
var D = q*q/4 + p*p*p/27;
if (Math.abs(D) < Number.EPSILON) { // D = 0 -> two roots
roots = [-1.5*q/p, 3*q/p];
} else if (D > 0) { // Only one real root
var u = cuberoot(-q/2 - Math.sqrt(D));
roots = [u - p/(3*u)];
} else { // D < 0, three roots, but needs to use complex numbers/trigonometric solution
var u = 2*Math.sqrt(-p/3);
var t = Math.acos(3*q/p/u)/3; // D < 0 implies p < 0 and acos argument in [-1..1]
var k = 2*Math.PI/3;
roots = [u*Math.cos(t), u*Math.cos(t-k), u*Math.cos(t-2*k)];
}
}
// Convert back from depressed cubic
for (var i = 0; i < roots.length; i++)
roots[i] -= b/(3*a);
return roots;
}