使用该df.apply(..., axis=1)函数,您可以将整行移交给定义的函数并计算所需的输出。尽管不如其他解决方案那么优雅,但我认为它更具可扩展性。
data = [{"Model":"Neg Exp","A": 3,"C": 2},
{"Model":"Power Model","A": 2,"C": 1},
{"Model":"Log","A": 2,"C": 7}]
import pandas as pd
df = pd.DataFrame(data)
def conditional_apply(row):
if row["Model"].lower().find("exp") >= 0:
return row["A"]+ row["C"]
elif row["Model"].lower().find("pow") >= 0:
return row["A"]* row["C"]
elif row["Model"].lower().find("log") >= 0:
return row["A"]- row["C"]
df["Result"] = df.apply(lambda row: conditional_apply(row), axis=1)
结果:
df
Out[87]:
Model A C Result
0 Neg Exp 3 2 5
1 Power Model 2 1 2
2 Log 2 7 -5
编辑:
稍微清理一下conditional_apply
def conditional_apply(row):
model, A, C = row["Model"].lower(), row["A"], row["C"]
if model.find("exp") >= 0:
return A+ C
elif model.find("pow") >= 0:
return A* C
elif model.find("log") >= 0:
return A- C