没有直接的方法可以将二元组添加到 vader 词典中。这是因为 vader 会考虑单个令牌进行情绪分析。但是,可以使用以下步骤执行此操作:
- 创建二元组作为标记。例如,您可以将二元组(“no issues”)转换为标记(“noissues”)。
- 维护新创建令牌的极性字典。{“无问题”:2}
- 然后在传递文本以计算情绪分数之前执行额外的文本处理。
以下代码完成了上述操作:
allowed_bigrams = {'noissues' : 2} #add more as per your requirement
def process_text(text):
tokens = text.lower().split() # list of tokens
bigrams = list(nltk.bigrams(tokens)) # create bigrams as tuples of tokens
bigrams = list(map(''.join, bigrams)) # join each word without space to create new bigram
bigrams.append('...') # make length of tokens and bigrams list equal
#begin recreating the text
final = ''
for i, token in enumerate(tokens):
b = bigrams[i]
if b in allowed_bigrams:
join_word = b # replace the word in text by bigram
tokens[i+1] = '' #skip the next word
else:
join_word = token
final += join_word + ' '
return final
text = 'Hello, I have no issues with you'
print (text)
print (analyser.polarity_scores(text))
final = process_text(text)
print (final)
print(analyser.polarity_scores(final))
输出 :
Hello, I have no issues with you
{'neg': 0.268, 'neu': 0.732, 'pos': 0.0, 'compound': -0.296}
hello, i have noissues with you
{'neg': 0.0, 'neu': 0.625, 'pos': 0.375, 'compound': 0.4588}
注意在输出中,“no”和“issues”这两个词是如何被加在一起形成二元组“noissues”的。