尽管我阅读了算法,但我对非线性有限差分法的编码有问题。这是《数值分析》 (Burden RL, Faires JD, 2010)一书中的一个例子,第 11.4 节,第 694 页。
下面是我从书中得到的算法。我需要为此编写代码:
我成功地为线性问题编写了相同的代码(上面提到的书中的第 11.3 节):
function LinearFiniteDifference()
clear
clc
p = @(x) (-2/x);
q = @(x) (2/x^2);
r = @(x) (sin(log(x))/x^2);
ga = 1; gb = 2; alpha = 1; beta = 2; N = 9;
% h = (gb - ga)/(N + 1); h = 0.1
fprintf(' x w \n');
h = (gb - ga)/(N + 1);
a = zeros(1, N + 1);
b = zeros(1, N + 1);
c = zeros(1, N + 1);
d = zeros(1, N + 1);
l = zeros(1, N + 1);
u = zeros(1, N + 1);
z = zeros(1, N + 1);
w = zeros(1, N + 1);
x = ga + h;
a(1) = 2 + h^2*q(x);
b(1) = -1 + 0.5*h*p(x);
d(1) = -h^2*r(x) + (1 + 0.5*h*p(x))*alpha;
for i = 2 : N - 1
x = ga + i*h;
a(i) = 2 + h^2*q(x);
b(i) = -1 + 0.5*h*p(x);
c(i) = -1 - 0.5*h*p(x);
d(i) = -h^2*r(x);
endfor
x = gb - h;
a(N) = 2 + h^2*q(x);
c(N) = -1 - 0.5*h*p(x);
d(N) = -h^2*r(x) + (1 - 0.5*h*p(x))*beta;
l(1) = a(1);
u(1) = b(1)/a(1);
z(1) = d(1)/l(1);
for i = 2 : N - 1
l(i) = a(i) - c(i)*u(i-1);
u(i) = b(i)/l(i);
z(i) = (d(i) - c(i)*z(i-1))/l(i);
endfor
l(N) = a(N) - c(N)*u(N-1);
z(N) = (d(N) - c(N)*z(N-1))/l(N);
w(N) = z(N);
for i = N - 1 : -1 : 1
w(i) = z(i) - u(i)*w(i+1);
endfor
i = 0;
fprintf('%5.4f %11.8f\n', ga, alpha);
for i = 1 : N
x = ga + i*h;
fprintf('%5.4f %11.8f\n', x, w(i));
endfor
i = N + 1;
fprintf('%5.4f %11.8f\n', gb, beta);
endfunction
我认为非线性也是一样的,但事实并非如此。请给我一些帮助,我真的很感激。太感谢了!