在使用 KNN 拟合我的估计器之前,如何使用 sklearn RFECV 方法选择最佳特征以传递给 LinearDiscriminantAnalysis(n_components=2) 方法进行降维。
pipeline = make_pipeline(Normalizer(), LinearDiscriminantAnalysis(n_components=2), KNeighborsClassifier(n_neighbors=10))
X = self.dataset
y = self.postures
min_features_to_select = 1 # Minimum number of features to consider
rfecv = RFECV(svc, step=1, cv=None, scoring='f1_weighted', min_features_to_select=min_features_to_select)
rfecv.fit(X, y)
print(rfecv.support_)
print(rfecv.ranking_)
print("Optimal number of features : %d" % rfecv.n_features_)
Plot number of features VS. cross-validation scores
plt.figure()
plt.xlabel("Number of features selected")
plt.ylabel("Cross validation score (nb of correct classifications)")
plt.plot(range(min_features_to_select,
len(rfecv.grid_scores_) + min_features_to_select),
rfecv.grid_scores_)
plt.show()
我从此代码中收到以下错误。如果我在没有 LinearDiscriminantAnalysis() 步骤的情况下运行此代码,那么它可以工作,但这是我处理的重要部分。
*** ValueError: when `importance_getter=='auto'`, the underlying estimator Pipeline should have `coef_` or `feature_importances_` attribute. Either pass a fitted estimator to feature selector or call fit before calling transform.