下面是我的示例架构。
|-- provider: string (nullable = true)
|-- product: string (nullable = true)
|-- asset_name: string (nullable = true)
|-- description: string (nullable = true)
|-- creation_date: string (nullable = true)
|-- provider_id: string (nullable = true)
|-- asset: string (nullable = true)
|-- asset_clas: string (nullable = true)
|-- Actors: array (nullable = true)
| |-- element: string (containsNull = false)
|-- Actors_Display: array (nullable = true)
| |-- element: string (containsNull = false)
|-- Audio_Type: array (nullable = true)
| |-- element: string (containsNull = false)
|-- Billing_ID: array (nullable = true)
| |-- element: string (containsNull = false)
|-- Bit_Rate: array (nullable = true)
| |-- element: string (containsNull = false)
|-- CA_Rating: array (nullable = true)
| |-- element: string (containsNull = false)
我需要分解所有数组类型的列。我有大约 80 多列,并且列不断变化。我目前正在使用explode(array_zip)
val df= sourcedf.select($"provider",$"asset_name",$"description",$"creation_date",$"provider_id",$"asset_id",$"asset_class",$"product",$"provider_id",$"eligible_platform",$"actors",$"category",
explode_outer(arrays_zip($"Actors_Display",$"Audio_Type",$"Billing_ID",$"Bit_Rate",$"CA_Rating")
val parsed_output = df.select(col("provider"),("asset_name"),col("description"),col("creation_date"),col("product"),col("provider"),
col("povider_id"),col("asset_id"),col("asset_class"),
col("col.Actors_Display"),col("col.Audio_Type"),col("col.Billing_ID"),col("col.Bit_Rate"),col("col.CA_Rating"))
通过使用,上面我能够得到输出。但这仅适用于一个特定文件。就我而言,将经常添加新列。那么,是否有任何功能可以分解多个列以更改架构,并从文件中选择非数组列。有人可以举个例子吗
注意:只有数组列不断变化,其余的将保持不变。
下面是样本数据
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ADIL>
<Meta>
<AMS Asset_Name="asd" Provider="Level" Product="MOTD" Version_Major="1" Version_Minor="0" Description="ZXC" Creation_Date="2009-12-03" Provider_ID="qwer.com" Asset_ID="A12we" Asset_Class="package"/>
<App_Data App="MOD" Name="Actors" Value="CableLa1.1"/>
<App_Data App="MOD" Name="Actors_Display" Value="RTY"/>
<App_Data App="MOD" Name="Audio_Type" Value="FGH"/>
</Meta>
<Asset>
<Meta>
<AMS Asset_Name="bnm" Provider="Level Film" Product="MOTD" Version_Major="1" Version_Minor="0" Description="bnj7" Creation_Date="2009-12-03" Provider_ID="levelfilm.com" Asset_ID="DDDB0610072533182333" Asset_Class="title"/>
App_Data App="rt" Name="Billing_ID" Value="2020-12-29T00:00:00"/>
<App_Data App="MOD" Name="Bit_Rate" Value="2021-12-29T23:59:59"/>
<App_Data App="MOD" Name="CA_Rating" Value="16.99"/>
</Meta>
<Asset>
<Meta>
<AMS Asset_Name="atysd" Provider="Level1" Product="MOTD2" Version_Major="1" Version_Minor="0" Description="ZXCY" Creation_Date="2009-12-03" Provider_ID="qweDFtrr.com" Asset_ID="A12FGwe" Asset_Class="review"/>
这是xml数据。最初,解析此数据并将所有名称属性值转换为列名,并将所有“值”属性值转换为列名的值。这个 XML 有重复的标签,所以解析后的最终结果是数组列,我在解析逻辑的末尾使用了 collect_list。
这是解析后的示例输出。
+-------------------+-------------------+-----------------+------------+--------------+
|Actors |Actors_Display |Audio_Type |Billing_ID |Bit_rate
+-------------+---------------+-----------------------------------------+------------
|["movie","cinema",] | ["Dolby 5.1"] | ["High", "low"] | ["GAR15"]| ["15","14"]
+-------------+-----+-------------------+-----------------+--------------+----------