TDLR;
我有一个支持 Kafka 的 Azure 事件中心,我试图从 Google Cloud 的 Dataflow 服务连接到它,以将数据流式传输到 Google Big Query。我可以成功地使用 Kafka CLI 与 Azure 事件中心对话。但是,使用 GCP,5 分钟后,我在 GCP 数据流作业窗口中收到超时错误。
启用 Kafka 的 Azure EH -> GCP 数据流 -> GCP 大查询表
细节
要设置启用 Kafka 的事件中心,我按照此 GitHub 页面上的详细信息进行操作。它让开发人员添加一个jaas.conf
和client_common.properties
。其中jaas.conf
包括对登录模块的引用以及用户名/密码。带有 Kafka 的事件中心的用户名是$ConnectionString
. 密码是从 CLI 复制的连接字符串。client_common.properties
包含两个标志:security.protocol=SASL_SSL
和sasl.mechanism=PLAIN
。通过配置这些文件,我可以使用 Kafka CLI 工具和 Azure 事件中心发送和接收数据。我可以通过 Azure 事件中心看到从生产者到消费者的数据流。
export KAFKA_OPTS="-Djava.security.auth.login.config=jaas.conf"
(echo -n "1|"; cat message.json | jq . -c) | kafka-conle-producer.sh --topic test-event-hub --broker-list test-eh-namespace.servicebus.windows.net:9093 --producer.config client_common.properties --property "parse.key=true" --property "key.separator=|"
kafka-console-consumer.sh --topic test-event-hub --bootstrap-server test-eh-namespace.servicebus.windows.net:9093 --consumer.config client_common.properties --property "print.key=true"
# prints: 1 { "transaction_time": "2020-07-20 15:14:54", "first_name": "Joe", "last_name": "Smith" }
我为 Kafka -> Big Query修改了Google 的数据流模板。已经为重置偏移量指定了配置映射。我添加了其他配置以匹配 Azure 事件中心与 Kafka 教程。虽然不是最佳实践,但我将连接字符串添加到密码字段以进行测试。当我将它上传到 GCP 数据流引擎并运行该作业时,我每 5 分钟在日志中收到超时错误,并且在 Google Big Query 中没有任何结果。
作业命令
gcloud dataflow jobs run kafka-test --gcs-location=<removed> --region=us-east1 --worker-zone=us-east4-a --parameters bootstrapServers=test-eh-namespace.servicebus.servicebus.windows.net:9093,inputTopic=test-event-hub,outputTableSpec=project:Kafka_Test.test --service-account-email my-service-account.iam.gserviceaccount.com
GCP 数据流中的错误
# these errors show up in the worker logs
Operation ongoing in step ReadFromKafka/KafkaIO.Read/Read(KafkaUnboundedSource)/DataflowRunner.StreamingUnboundedRead.ReadWithIds for at least 05m00s without outputting or completing in state process at java.lang.Thread.sleep(Native Method) at org.apache.kafka.common.utils.SystemTime.sleep(SystemTime.java:45) at org.apache.kafka.clients.consumer.internals.Fetcher.getTopicMetadata(Fetcher.java:366) at org.apache.kafka.clients.consumer.KafkaConsumer.partitionsFor(KafkaConsumer.java:1481) at com.google.cloud.teleport.kafka.connector.KafkaUnboundedSource.updatedSpecWithAssignedPartitions(KafkaUnboundedSource.java:85) at com.google.cloud.teleport.kafka.connector.KafkaUnboundedSource.createReader(KafkaUnboundedSource.java:125) at com.google.cloud.teleport.kafka.connector.KafkaUnboundedSource.createReader(KafkaUnboundedSource.java:45) at org.apache.beam.runners.dataflow.worker.WorkerCustomSources$UnboundedReader.iterator(WorkerCustomSources.java:433) at org.apache.beam.runners.dataflow.worker.util.common.worker.ReadOperation.runReadLoop(ReadOperation.java:186) at org.apache.beam.runners.dataflow.worker.util.common.worker.ReadOperation.start(ReadOperation.java:163) at org.apache.beam.runners.dataflow.worker.util.common.worker.MapTaskExecutor.execute(MapTaskExecutor.java:92) at org.apache.beam.runners.dataflow.worker.StreamingDataflowWorker.process(StreamingDataflowWorker.java:1426) at org.apache.beam.runners.dataflow.worker.StreamingDataflowWorker.access$1100(StreamingDataflowWorker.java:163) at org.apache.beam.runners.dataflow.worker.StreamingDataflowWorker$7.run(StreamingDataflowWorker.java:1105) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748)
Execution of work for computation 'S4' on key '0000000000000001' failed with uncaught exception. Work will be retried locally.
# this error shows up in the Job log
Error message from worker: org.apache.kafka.common.errors.TimeoutException: Timeout expired while fetching topic metadata
更新配置
Map<String, Object> props = new HashMap<>();
// azure event hub authentication
props.put("sasl.mechanism", "PLAIN");
props.put("security.protocol", "SASL_SSL")
props.put("sasl.jaas.config", "org.apache.kafka.common.security.plain.PlainLoginModule required username=\"$ConnectionString\" password=\"<removed>\";");
props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
// https://github.com/Azure/azure-event-hubs-for-kafka/blob/master/CONFIGURATION.md
props.put("request.timeout.ms", 60000);
props.put("session.timeout.ms", 15000);
props.put("max.poll.interval.ms", 30000);
props.put("offset.metadata.max.bytes", 1024);
props.put("connections.max.idle.ms", 180000);
props.put("metadata.max.age.ms", 180000);
管道
PCollectionTuple convertedTableRows =
pipeline
/*
* Step #1: Read messages in from Kafka
*/
.apply(
"ReadFromKafka",
KafkaIO.<String, String>read()
.withConsumerConfigUpdates(ImmutableMap.of(props))
.withBootstrapServers(options.getBootstrapServers())
.withTopics(topicsList)
.withKeyDeserializerAndCoder(
StringDeserializer.class, NullableCoder.of(StringUtf8Coder.of()))
.withValueDeserializerAndCoder(
StringDeserializer.class, NullableCoder.of(StringUtf8Coder.of()))
.withoutMetadata())
/*
* Step #2: Transform the Kafka Messages into TableRows
*/
.apply("ConvertMessageToTableRow", new MessageToTableRow(options));