我想使用 sagemaker 部署用于欺诈检测的实时预测机器学习模型。
我使用 sagemaker jupyter 实例来:
-load my training data from s3 contains transactions
-preprocessing data and features engineering (i use category_encoders to encode the categorical value)
-training the model and configure the endpoint
对于推理步骤,我使用了一个 lambda 函数,它调用我的端点来获取每个实时事务的预测。
should i calculte again all the features for this real time transactions in lambda function ?
for the features when i use category_encoders with fit_transform() function to transform my categorical feature to numerical one, what should I do because the result will not be the same as training set?
is there another method not to redo the calculation of the features in the inference step?