我正在尝试将模型拟合到我的rating
(1,2,3) 和group
(1,2,3) 的有序分类数据中。其他预测因子是age
(18-23, 24-30),continent
和medication
(y/n) 的使用。我一直在使用有用的教程:https ://journals.sagepub.com/doi/full/10.1177/2515245918823199来指导我完成我的第一个贝叶斯回归,但我希望有人可以帮助解释如何“检查”模型?
我运行了以下模型:
modelall<- brm(formula = rating ~ 1 + cs(group) + medication + continent +agequartiles,
data = df,
family = acat(“cloglog”))
modelagroup<- brm(formula = rating ~ 1 + cs(group),
data = df,
family = acat("cloglog"))
modelage<- brm(formula = rating ~ 1 + cs(group) + agequartiles,
data = df,
family = acat("cloglog"))
modelmeds<- brm(formula = rating ~ 1 + cs(group) + medication,
data = df,
family = acat("cloglog"))
我已经习惯了使用 P 值我实际上不确定如何解释我的输出
> summary(model group)
Family: acat
Links: mu = cloglog; disc = identity
Formula: rating ~ 1 + cs(group)
Data: df (Number of observations: 2637)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept[1] 2.81 0.17 2.49 3.14 1.01 697 1156
Intercept[2] -0.56 0.09 -0.73 -0.40 1.01 682 1341
group2[1] 0.81 0.20 0.42 1.20 1.01 765 1399
group2[2] -0.47 0.12 -0.70 -0.24 1.01 855 1508
group3[1] 0.83 0.20 0.45 1.23 1.01 684 1328
group3[2] -0.45 0.12 -0.68 -0.22 1.01 805 1533
Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
disc 1.00 0.00 1.00 1.00 1.00 4000 4000
Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
如果有人可以提供帮助,我将不胜感激,根据我的理解应该在 1.1 和 ESS 尽可能高。由于不是我样本中的每个人都同意回答每个问题,我似乎无法做一个 LOO,因为他们有不同数量的观察。除了查看 CI 是否超过 0 之外,我只是不确定如何计算模型中应该包含的内容。如何检查我的模型是否正常工作?
谢谢